Citation: | TANG Feifei, HU Jiaying, MA Ying, ZHOU Zhelin, WANG Jun, HAO Yafei. A Landslide Displacement Prediction Method of Particle Swarm Optimization Combined with Support Vector Machine Regression Based on Recursive Feature Elimination Selection[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 50-60. doi: 10.3724/j.gyjzG23071806 |
[1] |
许强, 黄润秋, 李秀珍.滑坡时间预测预报研究进展[J].地球科学进展, 2004(3):478-483.
|
[2] |
KALANTAR B, UEDA N, AL-NAJJAR H A H, et al. A comparison between three conditioning factors dataset for landslide prediction in the Sajadrood catchment of Iran[C]//Proceedings of XXIV ISPRS Congress: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences.2020:625-635.
|
[3] |
SHIHABUDHEEN K V, PILLAI G N, PEETHAMBARAN B. Prediction of landslide displacement with controlling factors using extreme learning adaptive neuro-fuzzy inference system (ELANFIS)[J]. Applied Soft Computing, 2017, 61: 892-904.
|
[4] |
彭令, 牛瑞卿, 赵艳南, 等. 基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J]. 武汉大学学报(信息科学版), 2013, 38(2):148-152, 161.
|
[5] |
周超, 殷坤龙, 黄发明. 混沌序列 WA-ELM 耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680.
|
[6] |
黄健, 李桥, 巨能攀, 等. 基于主控因子分析与GM-IAGA-WNN联合模型的平推式滑坡位移预测研究:以垮梁子滑坡为例[J]. 工程地质学报, 2019, 27(4):862-872.
|
[7] |
ZHANG W, XIAO R, SHI B, et al. Forecasting slope deformation field using correlated grey model updated with time correction factor and background value optimization[J/OL]. Engineering Geology, 2019, 260[2023-07-18]. https://doi.org/10.1016/j.enggeo.2019.105215.
|
[8] |
宋丽伟.基于经验模态分解和LSTM模型的滑坡位移预测[J].人民长江, 2020, 51(5):144-148.
|
[9] |
王朝阳, 李丽敏, 温宗周, 等.基于时间序列和CNN-LSTM的滑坡位移动态预测[J].国外电子测量技术, 2022, 41(3):1-8.
|
[10] |
LI Y Y, SUN R L, YIN K L, et al. Forecasting of landslide displacements using a chaos theory based wavelet analysis-Volterra filter model[R/OL]. 2019[2023-07-18]. chrome-extension://bnjoienjhhclcabnkbhhfndecoipmcdg/background/jgpdf/layout/index.html?file=https://www.nature.com/articles/s41598-019-56405-y.pdf.
|
[11] |
陈曦, 高雅萍, 涂锐.基于EMD-TAR组合模型的滑坡位移预测研究[J].人民珠江, 2022, 43(3):96-101
, 108.
|
[12] |
GUO Z Z, CHEN L X, GUI L, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17(3):567-583.
|
[13] |
DENG D M, LIANG Y, WANG L Q, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression:a case of landslides in Three Gorges Reservoir area[J]. Yantu Lixue/Rock and Soil Mechanics, 2017, 38(12):3660-3669.
|
[14] |
李秀珍, 许强.滑坡预报模型和预报判据[J].灾害学, 2003, 18(4):71-78.
|
[15] |
李强, 李端有.滑坡位移监测动态预报时间序列分析技术研究[J].长江科学院院报, 2005, 22(6):22-25.
|
[16] |
XING Y, YUE J P, CHENG C. Interval estimation of landslide displacement prediction based on time series decomposition and long short-term memory network[J].IEEE Access, 2020, 8:3187-3196.
|
[17] |
SHARIFI S, HENDRY M, MACCIOTTA R, et al. Evaluation of filtering methods for use on high-frequency measurements of landslide displacements[J]. Natural Hazards and Earth System Sciences, 2022, 22(2):411-430.
|
[18] |
罗袆沅, 蒋亚楠, 许强, 等.GPS滑坡位移监测时序分析与组合建模预测[J].防灾科技学院学报, 2020, 22(4):20-28.
|
[19] |
LIN H, LU Y, DING R, et al. A multi-feature fusion apple classification method based on image processing and improved SVM[J]. Agricultural Biotechnology, 2022, 11(5):84-91.
|
[20] |
VAPNIK V N. The nature of statistical learning theory[M]. Berlin: Springer, 1995.
|
[21] |
GUYON I, WESTON J, BARNHILL S, et al. Gene Selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1/2/3):389-422.
|
[22] |
YIN Y H, JANG-JACCARD J, XU W, et al. IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset[J/OL]. Journal of Big Data, 2023, 10 [2023-07-18]. https://doi.org/10.1186/s40537-023-00694-8.
|
[23] |
CROZIER M J, EYLES R J. Assessing the probability of rapid mass movement[C]//Proceedings of the 3rd Australia-New Zealand Conference on Geomechanics. Wellington: New Zealand Institution of Engineers, 1980:47-51.
|
[24] |
QI L P. A course recommender system of MOOC based on collaborative filtering algorithm with improved pearson correlation coefficient[D]. 武汉:华中师范大学, 2019.
|