Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
Citation: ZHU Mingqiao, TAN Yiping, TAN Xiaopeng, DONG Jiarui, LIU Wanli. Seismic Performance Analysis of UHPC Composite Columns Confined by GFRP Tubes[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 211-219. doi: 10.3724/j.gyjzG23071011

Seismic Performance Analysis of UHPC Composite Columns Confined by GFRP Tubes

doi: 10.3724/j.gyjzG23071011
  • Received Date: 2023-07-10
    Available Online: 2024-12-05
  • In order to study the influence of winding angle and axial compression ratio of GFRP fibers on the seismic performance of UHPC composite columns confined by GFRP tubes, six GFRP tube confined UHPC composite columns and one UHPC composite column were designed, and the quasi-static tests of the specimens under quasi-static load and axial force were carried out, and the skeleton curve characteristics of the structure were analyzed. In order to further explore the effects of diameter-thickness ratio, slenderness ratio, circumferential elastic modulus of confined tubes, and tensile strength of concrete on the seismic performance of the composite column, a finite element analysis model of composite column is established, and the energy dissipation capacity of the structure with different design schemes was analyzed. The results showed that GFRP tube was effective in improving the seismic performance of UHPC columns, and the failure mode, peak load and peak displacement of composite columns were improved, and the finite element analysis results were in good agreement with the experimental results, which verified the effectiveness of the analysis model. Through the extended analysis, it was found that the bearing capacity of the specimen increased and the energy dissipation capacity became worse with the decrease of diameter-thickness ratio and the increase of circumferential elastic modulus. With the decrease of slenderness ratio, the bearing capacity of the specimen increased, the ultimate displacement became smaller, and the energy dissipation capacity became worse. The tensile strength of concrete had an effect on the seismic performance of the specimen, but the effect was small. Through regression analysis, a formula of shear capacity of UHPC composite columns confined by GFRP tubes was proposed.
  • [1]
    祝明桥, 董嘉睿, 李智.玻璃纤维增强复材管约束纤维增强自密实活性粉末混凝土长柱轴压性能试验研究[J].工业建筑, 2022, 52(9):28-34.
    [2]
    周岩, 张金源.GFRP管混凝土柱低周反复载荷下抗震性能研究[J].炼油与化工, 2014, 25(2):6-8

    , 59.
    [3]
    杨城. GFRP管实心混凝土长柱力学性能研究 [D]. 杭州:浙江工业大学, 2016.
    [4]
    任士朴. FRP约束钢筋混凝土桥墩抗震性能研究 [D]. 西安:长安大学, 2014.
    [5]
    刘寿康. 低周反复荷载下FRP管混凝土柱滞回性能分析 [D]. 大庆:东北石油大学, 2013.
    [6]
    王清湘, 赵鹏展, 关洪波.GFRP管混凝土柱抗震性能试验研究[J].工业建筑, 2010, 40(4):70-74.
    [7]
    马文. GFRP管约束型钢再生混凝土柱抗震性能试验研究 [D]. 广州:广州大学, 2020.
    [8]
    肖建庄, 黄一杰.GFRP管约束再生混凝土柱抗震性能与损伤评价[J].土木工程学报, 2012, 45(11):112-120.
    [9]
    杨旭. GFRP约束再生块体混凝土柱的轴压及抗震性能试验与分析[D]. 广州:华南理工大学, 2021.
    [10]
    邓宗才, 顾佳培.FRP管约束活性粉末混凝土方柱抗震性能研究[J].震灾防御技术, 2019(4):769-780.
    [11]
    赵悦. FRP管活性粉末混凝土柱抗震性能非线性分析 [D]. 哈尔滨:黑龙江大学, 2016.
    [12]
    宋化宇. GFRP管-型钢活性粉末混凝土组合柱轴压与抗震性能研究 [D]. 大庆:东北石油大学, 2021.
    [13]
    祝明桥, 李智, 张紫薇.玻璃纤维增强复材管自密实微膨胀活性粉末混凝土短柱轴压性能试验研究[J].工业建筑, 2021, 51(5):188-195.
    [14]
    王磊佳, 祝明桥, 董嘉睿.基于改进Drucker-Prager准则的GFRP管约束高强混凝土短柱单轴压缩分析模型[J].应用力学学报, 2023, 40(2):397-404.
    [15]
    中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社, 2019.
    [16]
    ATSM. Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe by split disk method:ASTM D2290-19[S]. West Conshohocken, PA, USA: ASTM, 2019.
    [17]
    全国纤维增强塑料标准化技术委员会.纤维增强热固性塑料管轴向压缩性能试验方法:GB/T 5350—2005[S]. 北京:中国标准出版社, 2015.
    [18]
    吴有明. 活性粉末混凝土(RPC)受压应力-应变全曲线研究 [D]. 广州:广州大学, 2012.
    [19]
    沈涛. 活性粉末混凝土单轴受压本构关系及结构设计参数研究 [D]. 哈尔滨:哈尔滨工业大学, 2014.
    [20]
    单波. 活性粉末混凝土基本力学性能的试验与研究 [D]. 长沙:湖南大学, 2002.
    [21]
    杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究 [D]. 北京:北京交通大学, 2006.
    [22]
    于冬雪, 于化杰, 黎红兵.FRP建筑材料的结构性能及应用综述[J].材料导报, 2021, 35(增刊2):660-668.
    [23]
    中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011—2010[S]. 2016版. 北京:中国建筑工业出版社, 2016.
    [24]
    中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社, 2015.
    [25]
    中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社, 2014.
    [26]
    JIN L, FAN L, LI D, et al. Size effect of square concrete-filled steel tubular columns subjected to lateral shear and axial compression: modelling and formulation[J]. Thin-Walled Structures, 2020, 157, 107158.
    [27]
    TOMII M, SAKINO K. Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force[J]. Transactions of the Architectural Institute of Japan, 1979, 281: 81-92.
    [28]
    YE Y, HAN L H, TAO Z, et al. Experimental behaviour of concrete-filled steel tubular members under lateral shear loads[J]. Journal of Constructional Steel Research, 2016, 122: 226-237.
    [29]
    COUNCIL A T. Quantification of building seismic performance factors [M]. US: Department of Homeland Security, FEMA, 2009.
    [30]
    ZOHREVAND P, MIRMIRAN A. Seismic response of ultra-high performance concrete-filled FRP tube columns[J]. Journal of Earthquake Engineering, 2013, 17(1): 155-170.
  • Relative Articles

    [1]YANG Tao, SHENG Zhicheng, WANG Hengdong. ONE DIMENSIONAL ANALYTICAL SOLUTION FOR CONSOLIDATION OF A COMPOSITE GROUND WITH T-SHAPED DEEP CEMENT MIXING COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 102-108. doi: 10.13204/j.gyjz202003017
    [3]Xu Youjun Ding Yahui Liu Xinmei, . CALCULATION OF UNLOADING ADDITIONAL STRESS AT ANY POINT IN THE INTERIOR OF SEMI-INFINITE BODY DURING THE OVERPASS SUBWAY PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 110-117. doi: 10.13204/j.gyjz201506022
    [4]Yang Tao, Wan Yihao, He Desheng. STATE THE ART OF CONSOLIDATION THEORY FOR COMPOSITE GROUND[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 152-155. doi: 10.13204/j.gyjz201501031
    [5]Deng Zongwei, Zhu Zhixiang, Zeng Xiangjun, Kong Gangqiang. STUDY OF RHEOLOGICAL PROPERTIES OF THE LACUSTRINE SOFT SOIL UNDER DIFFERENT STRESS LEVEL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 67-72. doi: 10.13204/j.gyjz201406016
    [6]Wang Juan, Zhao Junhai, Zhu Qian, Zhang Zhichao, Liu Qi. AXIAL BEARING CAPACITY OF FRP-CONCRETE-STEEL DOUBLE-SKIN TUBULAR SHORT COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 130-133. doi: 10.13204/j.gyjz201111028
    [7]LüWenzhi, Li Chunzhi, Yu Jianlin, Liu Chao. STUDY ON THE SETTLEMENT LAW OF THE COMPOSITE GROUND UNDER A FLEXIBLE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 58-65,57. doi: 10.13204/j.gyjz201009016
    [8]Wu Ruiqian, Xie Kanghe, Shen Jianming. ANALYTICAL SOLUTIONS OF ONE-DIMENSIONAL THERMAL CONSOLIDATION OF SATURATED SOIL UNDER PERIODIC FLUCTUATION OF SURFACE TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 86-90. doi: 10.13204/j.gyjz201008020
    [9]Shi Ping, He Shixiu, Fan Dongkai. TEST STUDY OF REAL THREE AXLE ON CROSSRANGE UNLOADING DEFORMATION OF CLAY[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 88-91,104. doi: 10.13204/j.gyjz200906021
    [10]LüWenzhi, Yu Jianlin, Zheng Wei, Gong Xiaonan, Jing Zijing. STUDY OF ANALYTIC SOLUTION OF COMPOSITE GROUND UNDER FLEXIBLE FOUNDATION BASED ON SUPER-SUB STRUCTURE INTERACTION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 77-83. doi: 10.13204/j.gyjz200904018
    [11]He Yaping, Zhuang Zuocheng, Han Tianwei, Yu Changhai, Gao Jianzhong, Dong Lilei. DESIGN OF COMPOSITE PILE OF PRESTRESSED PIPE PILE AND CAISSON PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 119-121. doi: 10.13204/j.gyjz200809034
    [12]Zhang Yanmei, Zhang Xudong, Zhang Hongru. CALCULATION METHOD OF GENERATION AND DISSIPATION OF EXCESS PORE WATER PRESSURE IN STONE COLUMNS FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 56-59,94. doi: 10.13204/j.gyjz200703015
    [13]Jiang Li, Chen Lun. ANALYTICAL SOLUTION FOR THE LOAD-DISPLACEMENT RELATIONSHIP OF PULLOUT DX PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 65-70. doi: 10.13204/j.gyjz200605018
    [14]Jiang Jianping, Gao Guangyun. STUDY ON BEARING CAPACITY PER VOLUME OF BORED-CAST-PLACE PILES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 43-45.
    [15]Yao Yong, Wang Ruheng, Lei Jinsong. ANALYSIS OF PRESSURE GROUTING AT PILE TIP OF BORED PILES IN PEBBLE STRATUM AND ITS BEARING CHARACTERISTICS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 59-63. doi: 10.13204/j.gyjz200507017
    [16]Yang Hua, Yang Min, Zhou Hongbo. AN ANALYTICAL SOLUTION FOR SINGLE PILE IN NON-HOMOGENEOUS SOIL CONSIDERING SOIL HARDENING BEHAVIOR OF PILE TIP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 46-48,55. doi: 10.13204/j.gyjz200503017
    [17]Liu Ming, Huang Maosong, Ma Jinrong. TESTING STUDY ON THE CLAY SOIL'S UNLOADING PROPERTIES UNDER HIGH STRESS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 71-74. doi: 10.13204/j.gyjz200508018
    [18]Zeng Jie, Yu Xinchun, Yu Fusheng. STRENGTHENING DESIGN OF OFFICE BUILDINGcS ARCHIVES FLOOR STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 15-17,27. doi: 10.13204/j.gyjz200406006
    [19]Yin Zifeng, Jin Xiangwu. ANALYSIS AND TREATMENT OF A LOCAL SLIDING ACCIDENT OF NO.3 RETAINING WALL OF A PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 88-90. doi: 10.13204/j.gyjz200402026
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.1 %FULLTEXT: 6.1 %META: 89.4 %META: 89.4 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.7 %其他: 19.7 %北京: 10.6 %北京: 10.6 %台州: 3.0 %台州: 3.0 %大连: 1.5 %大连: 1.5 %宣城: 1.5 %宣城: 1.5 %张家口: 1.5 %张家口: 1.5 %昆明: 1.5 %昆明: 1.5 %朝阳: 1.5 %朝阳: 1.5 %杭州: 6.1 %杭州: 6.1 %漯河: 4.5 %漯河: 4.5 %石家庄: 3.0 %石家庄: 3.0 %芒廷维尤: 25.8 %芒廷维尤: 25.8 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 6.1 %西宁: 6.1 %西安: 3.0 %西安: 3.0 %运城: 7.6 %运城: 7.6 %长沙: 1.5 %长沙: 1.5 %其他北京台州大连宣城张家口昆明朝阳杭州漯河石家庄芒廷维尤芝加哥西宁西安运城长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (54) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return