Citation: | LU Peng, ZHAO Tiansong, WANG Jian, CHANG Haosong, ZHENG Yun, LIU Xiaolan. A Method for Detecting Surface Corrosion Degree of Steel Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 133-139. doi: 10.3724/j.gyjzG23062009 |
[1] |
GROSHEK I G, HEBDON M H. Galvanic corrosion of ASTM A1010 steel connected to common bridge steels[J]. Journal of Materials in Civil Engineering, 2020, 32(8), 04020193.
|
[2] |
KERE K J, HUANG Q. Life-cycle cost comparison of corrosion management strategies for steel bridges[J]. Journal of Bridge Engineering, 2019, 24(4),0419007.
|
[3] |
WANG N, ZHAO Q, LI S, et al. Damage classification for masonry historic structures using convolutional neural networks based on still images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1073-1089.
|
[4] |
FELICIANO F F, LETA F R, MAINIER F B. Texture digital analysis for corrosion monitoring[J]. Corrosion Science, 2015, 93: 138-147.
|
[5] |
LI Z, LIU Y, HAYWARD R, et al. Knowledge-based power line detection for UAV surveillance and inspection systems[C]//Image & Vision Computing New Zealand, Ivcnz, International Conference. 2009.
|
[6] |
NIKOLIC J, BURRI M, REHDER J, et al. A UAV system for inspection of industrial facilities[C]//Aerospace Conference, 2013 IEEE. 2013.
|
[7] |
BONNÍN-PASCUAL F, ORTIZ A. Detection of cracks and corrosion for automated vessels visual inspection[C]//Proceedings of the 13th International Conference of the Catalan Association for Artificial Intelligence. l’Espluga de Francolí: Tarragona, 2010:20-22.
|
[8] |
BENTO M P, DE MEDEIROS F N, PAULA JR I C, et al. Image processing techniques applied for corrosion damage analysis[C]//Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing. Rio de Janeiro: 2009.
|
[9] |
AHUJA S K, SHUKLA M K. A survey of computer vision based corrosion detection approaches[C]//Information and Communication Technology for Intelligent Systems (ICTIS 2017). 2018:55-63.
|
[10] |
MEDEIROS F N S, RAMALHO G L B, BENTO M P, et al. On the evaluation of texture and color features for nondestructive corrosion detection[J/OL]. EURASIP Journal on Advances in Signal Processing, 2010[2010-07-07].https://doi.org/DOI: 10.1155/2010/817473.
|
[11] |
CHEN P H, SHEN H K, LEI C Y, et al. Fourier-transform-based method for automated steel bridge coating defect recognition[J]. Procedia Engineering, 2011, 14: 470-476.
|
[12] |
SHEN H K, CHEN P H, CHANG L M. Automated steel bridge coating rust defect recognition method based on color and texture feature[J]. Automation in Construction, 2013, 31(5): 338-356.
|
[13] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances In Neural Information Processing Systems, 2012, 25(2),3065386.
|
[14] |
ATHA D J, JAHANSHAHI M R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection[J]. Structural Health Monitoring, 2018,17(5):1110-1128.
|
[15] |
WANG Y, SHEN X, WU K, et al. Corrosion grade recognition for weathering steel plate based on a convolutional neural network[J]. Measurement Science & Technology, 2022,33(9),095014.
|
[16] |
ZHANG S, DENG X, LU Y, et al. A channel attention based deep neural network for automatic metallic corrosion detection[J]. Journal of Building Engineering, 2021, 42, 103046.
|
[17] |
XU J, GUI C, HAN Q. Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10): 1160-1174.
|
[18] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A,et al.An image is worth 16×16 words: transformers for image recognition at scale[C]//International Conference on Learning Representations.2021.
|
[19] |
中国国家标准化管理委员会.涂覆涂料前钢材表面处理表面清洁度的目视评定 第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材:GB/T 8923.1—2011[S].北京:中国标准出版社,2011.
|
[20] |
SIMONYAN K, ZISSERMAN A.Very deep convolutional Networks for large-scale image recognition[J/OL].Computer Science, 2014[2014-09-04].https://doi.org/10.48550/arXiv.1409.1556.
|
[21] |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2018.
|
[22] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|