Citation: | XING Wei, ZHOU Feng, ZHU Rui, CHEN Tingzhu. Study on Microbial Cure and Stabilization Effect and Mechanisms of Zinc-Contaminated Silt[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 32-42. doi: 10.3724/j.gyjzG23031904 |
[1] |
杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124.
|
[2] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
|
[3] |
陈云敏, 施建勇, 朱伟, 等. 环境岩土工程研究综述[J]. 土木工程学报, 2012, 45(4): 165-182.
|
[4] |
钱春香, 王明明, 许燕波. 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报(自然科学版), 2013, 43(3):669-674.
|
[5] |
GAO Y F, MENG H, HE J, et al. Field trial on use of soybean crude extract for carbonate precipitation and wind erosion control of sandy soil[J]. Journal of Central South University, 2020, 27(11): 3320-3333.
|
[6] |
CHEN H M, MIN F F, HU X, et al. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer[J/OL]. Journal of Hazardous Materials, 2023, 452[2023-03-19]. https://doi.org/10.1016/j.jhazmat.2023.131176.
|
[7] |
许朝阳, 张贺, 杨贺, 等. MICP技术对 Mn(Ⅱ)、Cr(Ⅵ)污染土壤的修复效果[J]. 扬州大学学报(自然科学版), 2020, 23(2): 73-78.
|
[8] |
NASRIN J, ABDOLREZA A, HOSSEIN A A, et al. Removal of heavy metals Zinc, Lead, and Cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 206-219.
|
[9] |
FANG L Y, NIU Q J, CHENG L, et al. Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii[J/OL]. Science of the Total Environment, 2021, 787[2023-03-19].https://doi.org/10.1016/j.scitotenv.2021.147627.
|
[10] |
李驰, 田蕾, 董彩环, 等. MICP技术联合多孔硅吸附材料对锌铅复合污染土固化/稳定化修复的试验研究[J]. 岩土力学, 2022, 43(2): 307-316.
|
[11] |
邵光辉, 戴浩然, 郭恒君. 微生物固化和稳定化铅污染粉土的强度与污染物浸出特性[J]. 林业工程学报, 2022, 7(5): 161-168.
|
[12] |
许朝阳, 杨贺, 黄建璋, 等. 生物修复Cu2+、Pb2+污染土的稳定性[J]. 工业建筑, 2018, 48(7): 33-37.
|
[13] |
WEI M L, DU Y J, REDDY K R, et al. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils[J]. Environmental Science and Pollution Research International, 2015, 22:19473-19483.
|
[14] |
许朝阳, 柏庭春, 黄建璋, 等. 铁细菌修复锌污染土壤的试验研究[J]. 工业建筑, 2016, 46(6): 90-93.
|
[15] |
JASON T D, MICHAEL B F, KLAUS N. Microbially induced cementation to control sand response to undrained shear[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11) [2023-03-19]. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
|
[16] |
刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
|
[17] |
ACHAL V, PAN X. Influence of calcium sources on microbially induced calcium carbonate precipitation by bacillus sp. CR2[J]. Applied Biochemistry and Biotechnology, 2014, 173(1):307-317.
|
[18] |
刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14.
|
[19] |
RAMACHANDRAN S K, RAMAKRISHNAN V, BANG S S. Remediation of concrete using micro-organisms[J]. ACI Materials Journal, 2001, 98(1): 3-9.
|
[20] |
WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
|
[21] |
马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223.
|
[22] |
TESSIER A, CAMPBELL P, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
|
[23] |
US Environmental Protection Agency(US EPA). Test methods for evaluating solid waste, physical/chemical methods. method 1311: toxicity characteristic leaching procedure:EPA SW-846[S]. Washington DC: US EPA, 1992.
|
[24] |
刘祖典, 李靖, 郭增玉, 等. 陕西关中黄土变形特性和变形参数的探讨[J]. 岩土工程学报, 1984, 6(3): 24-34.
|
[25] |
吴旭阳, 梁庆国, 牛富俊, 等. 黄土剪切应变硬化-软化分类试验研究[J]. 地下空间与工程学报, 2017, 13(6): 1457-1466.
|
[26] |
NEMATI M, GREENE E A, VOORDOUW G. Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option[J]. Process Biochemistry, 2005, 40(2): 925-933.
|
[27] |
KUNST F, RAPOPORT G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. Journal of Bacteriology, 1995, 177(9): 2403-2407.
|
[28] |
XU G J, LI D W, JIAO B Q, et al. Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1[J/OL]. Electronic Journal of Biotechnology, 2017, 25(25) [2023-03-19].https://doi.org/10.1016/J.EJBT.2016.10.008.
|
[29] |
PAKBAZ M S, BEHZADIPOUR G R. Evaluation of shear strength parameters of sandy soils upon microbial treatment[J]. Geomicrobiology Journal, 2018, 35(8): 721-726.
|
[30] |
QABANY A A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 992-1001.
|
[31] |
彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740.
|
[32] |
刘清, 王子健, 汤鸿霄. 重金属形态与生物毒性及生物有效性关系的研究进展[J]. 环境科学, 1996, 17(1): 89-92.
|
[33] |
尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
|
[34] |
MORTENSEN B M, HABER M J, DEJONG J T. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
|
[35] |
邵光辉, 尤婷, 赵志峰, 等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 129-135.
|
[36] |
AL QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 992-1001.
|
[37] |
王绪民, 王铖, 崔芮. 微生物在不同营养盐环境下矿化产物研究[J].工业建筑, 2019, 49(10): 208-212.
|
[38] |
刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战[J/OL]. 岩土工程学报, 2023[2023-03-19].https://doi.org/10.
11779/CJGE20230004.
|