Citation: | WANG Mingjun, SU Zhiwen, CHEN Bingcong, LIU Airong. Crack Segmentation of Underwater Structures of Bridges Based on Hierarchical Feature Residual Neural Network[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 126-132. doi: 10.3724/j.gyjzG23030303 |
[1] |
陈子龙.桥梁工程裂缝成因及防治措施[J].交通世界, 2022(23):114-116.
|
[2] |
ZOU Q, CAO Y, LI Q, et al. CrackTree:automatic crack detection from pavement images[J].Pattern Recognit Lett, 2012, 33(3):227-238.
|
[3] |
LI Q, ZOU Q, ZHANG D, et al. FoSA:F*Seed-growing approach for crack-line detection from pavement images[J]. Image Vis Comput, 2011, 29(12):861-872.
|
[4] |
XIE S, TU Z. et al. Holistically-nested edge detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015:1395-1403.
|
[5] |
KIM B, CHO S. Image-based concrete crack assessment using mask and region-based convolutional neural network[J]. Structure Control Health Monitoring, 2019, 26(8), e2381.
|
[6] |
LI C, XU P, NIU L, et al. Tunnel crack detection using coarseto-fine region localization and edge detection[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2019, 9(5), e1308.
|
[7] |
胡文魁,邓晖,付志旭,等.基于全卷积神经网络的桥梁裂缝分割和测量方法[J].工业建筑, 2022, 52(4):192-201
, 218.
|
[8] |
HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1):106-154.
|
[9] |
HU Y, ZHAO C. A novel LBP based methods for pavement crack detection[J]. Journal of Pattern Recognition Research, 2010, 5(1):140-147.
|
[10] |
LI Q, LIU X. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]//2008 Congress on Image and Signal Processing. Sanya, China:IEEE, 2008:792-796.
|
[11] |
TAN M, LE Q. Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. California, USA:PMLR, 2019:6105-6114.
|
[12] |
LIU W, RABINOVICH A, BERG A C, et al. ParseNet:looking wider to see better[J/OL]. Computer Science, 2015[2023-03-03]. http://arxiv.org/abs/1506.04579
|
[13] |
KONG T, YAO A, CHEN Y, et al. HyperNet:towards accurate region proposal generation and joint object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:2016:845-853.
|
[14] |
HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Hypercolumns for object segmentation and fine-grained localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:2015:447-456.
|
[15] |
WEISS K, KHOSHGOFTAAR T M, WANG D D, et al. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1):1-40.
|
[16] |
ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1):43-76.
|
[17] |
ELHASSOUNY A, SMARANDACHE F. Trends in deep convolutional neural Networks architectures:a review[C]//2019 International Conference of Computer Science and Renewable Energies (ICCSRE). Agadir, Morocco:IEEE, 2019:1-8.
|
[18] |
SHAFIQ M, GU Z. Deep residual learning for image recognition:a survey[J]. Applied Sciences, 2022, 12(18), 8972.
|
[19] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:2016:770-778.
|
[20] |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:2017:1492-1500.
|
[21] |
LIU Y, YAO J, LU X, et al. DeepCrack:a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338:139-153.
|
[22] |
谢文高,张怡孝,刘爱荣,等.基于水下机器人与数字图像技术的混凝土结构表面裂缝检测方法[J].工程力学, 2022, 39(增刊1):64-70.
|