Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
REN Jinlong, RONG Muning, XING Yunlin, ZHENG Ming, NIE Xin, FAN Jiansheng, LIU Yufei. Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008
Citation: REN Jinlong, RONG Muning, XING Yunlin, ZHENG Ming, NIE Xin, FAN Jiansheng, LIU Yufei. Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008

Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation

doi: 10.3724/j.gyjzG23022008
  • Received Date: 2023-02-20
    Available Online: 2024-02-27
  • Micro vibration control is one of the most important goals in the construction of ultraprecise and large-scale scientific facilities. In order to meet the requirements for micro vibration control in High Energy Photo Source (HEPS), Beijing, a 1-meter-thick reinforced concrete slab with a 3-meter-thick concrete layer has been cast. The paper presented a field test of an artificial frequency sweep test from 1 to 100 Hz after the completion of the main structure in HEPS. Based on the analysis of the obtained vibration signals in the time domain and frequency domain, an evaluation of the micro vibration level and the micro vibration control capacity of the slab was conducted. The results indicated that under the vibrator’s excitation from 1 to 100 Hz, the mass concrete slab of experimental hall performed well in micro vibration control.
  • [1]
    ERIKSSON M, van der VEEN J.F, & QUITMANN C. Diffraction- limited storage rings-a window to the science of tomorrow [J]. Journal of Synchrotron Radiation, 2014, 21: 5837-5842.
    [2]
    PRADO G, ARTHUZZI J.C.L, OSES G. L, et al. Synchrotron radiation in palaeontological investigations: examples from Brazilian fossils and its potential to South American palaeontology [J/OL]. Journal of South American Earth Sciences, 2021, 108[2021-05-21]. https://doi.org/10.1016/j.jsames.2020.102973.
    [3]
    姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学力学天文学, 2014, 44(10): 1075-1094.
    [4]
    CYRANOSKI D. China joins world-class synchrotron club [J]. Nature, 2009, 459: 724316-724317.
    [5]
    GORDON C G. Generic criteria for vibration sensitive equipment [C]//Conference on Optomechanical Engineering and Vibration Control. [s.l.]: Society of Photo-optical Instrumentation Engineers, 1999: 71-75.
    [6]
    AMICK H. On generic vibration criteria for advanced technology facilities [J]. Journal of the Institute of Environmental Sciences, 1997, 40: 535-544.
    [7]
    SERY A, NAPOLY O. Influence of ground motion on the time evolution of beams in linear colliders [J]. Physical Review E, 1996,53: 55323-55337.
    [8]
    OKADA H. The microtremor survey method, Geophysical Monograph Series Number 12[M]. [s.l.]: Society of exploratiom Geophysicists, 2003.
    [9]
    TOKSÖZM N. & Lacoss R.T. Microseisms: mode structure and sources [J]. Science, 1968, 159: 3817872- 3817873.
    [10]
    MILLER G F, PURSEY H. On the Partition of Energy between Elastic Waves in a Semi-Infinite Solid [C]//Proceedings of The Royal Society A: Mathematical. Physical and Engineering Sciences. [s.l.]: Royal Society, 1955:233: 55-69.
    [11]
    MILLER G F, PURSEY H. The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid [C]//Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences. [s.l.]: Royal Society, 1954: 521-541.
    [12]
    CELEBI E, FIRAT S, BEYHAN G, et al. Field experiments on wave propagation and vibration isolation by using wave barriers [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 5824-5833.
    [13]
    DIJCKMANS A, EKBLAD A, SMEKAL A, et al. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration [J]. Soil Dynamics and Earthquake Engineering, 2016: 84: 55-69.
    [14]
    TOYGAR O, ULGEN D. A full-scale field study on mitigation of environmental ground vibrations by using open trenches[J/ OL]. Building and Environment, 2021, 203[2021-06-25]. https://doi.org/10.1016/j.jsames. 2020. 108070.
    [15]
    刘晶磊, 刘鹏泉, 尚康君, 等. 层状地基环形沟隔振效果影响因素分析[J]. 地震工程学报, 2021, 43(6): 1394-1401

    , 1418.
    [16]
    肖慧娟, 董尘. 高速铁路运行引发场地振动的空沟隔振分析[J]. 地震工程学报, 2021, 43(6): 1419-1428.
    [17]
    罗文俊, 曹浩. 空沟和废弃轮胎填充沟隔振效果的有限元分析[J]. 建筑结构, 2020, 50(增刊2): 360-365.
    [18]
    N SIMOS, H AMICK, and A SOUEID, et al.NSLS-II ground vibration stability studies and design implementation [J], Synchrotron Radiation News 32, 5412(2019).
    [19]
    STUDER J A, PANDURI R, HP H. Synchrotron Facilities: Meeting Stringent Deformation and Vibration Criteria [C]//International Conferences On Case Histories in Geotechnical Engineering. Virginia, USA: Missouri University of Science and Technology, 2008: 15.
    [20]
    RODRIGUES F, RODRIGUESA R D, SILVA O H V, et al. Sirius Stability: From Foundation to Girders [J]. Synchrotron Radiation News, 2019,32: 520-526.
    [21]
    中华人民共和国住房和城乡建设部. 电子工业防微振工程技术规范: GB 51076—2015[S]. 北京: 中国计划出版社, 2015.
    [22]
    HARRIS J G. Elastic waves at high frequencies: techniques for radiation and diffraction of elastic and surface waves[M]. [s.l.]:Cambridge University Press, 2010: 77-80.
  • Relative Articles

    [1]HU Huijiang, LI Liping, JIN Hao, CHEN Yanhao, WANG Sheng, HUANG Ruizhe. An Initial Arrival-Moment Pickup Method of Microvibration Signals from Water Inrush Based on PAI-S and AIC[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 132-136,195. doi: 10.13204/j.gyjzG22031711
    [2]LI Yunfu, ZHANG Hongwei, MA Bo, WU Yanqi, LI Shengli. Characteristic Analysis of AE Signal Parameters of Masonry Structures in Axial Compression and In-Situ Axial Compression Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 8-11,63. doi: 10.13204/j.gyjzG20111210
    [3]FU Shengnan, WANG Bin. Analysis of Floor Vibration Responses Based on Complex Human-Induced Excitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 123-131. doi: 10.13204/j.gyjzG20072410
    [4]LIU Zhenlin, CHENG Yongfeng, LU Zhicheng, ZHANG Xiaojun, ZHU Zhubing, ZHANG Shujun. SHAKING TABLE TESTS OF ULTRA-HIGH-VOLTAGE TRANSFORMER MODELS WITH NONLINEAR VIBRATION ISOLATION DEVICES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 19-24. doi: 10.13204/j.gyjzG21052708
    [5]ZHAO Shiying, LI Ying, KANG Xiaoming, FAN Yaohu. EXPERIMENTAL STUDY ON FROST RESISTANCE OF RECYCLED FINE POWDER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 112-118,96. doi: 10.13204/j.gyjzG19122606
    [8]Hui Yunling, Li Zhongyu, Zheng Yun, Zhang Jiaqi. SHAKING TABLE TEST ON A LARGE STORK HEIGHT MOMENT FRAME[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 55-58. doi: 10.13204/j.gyjz201402013
    [9]Gan Lin, Li Hailong. COMPARATIVE STUDY ON MODAL PARAMETER IDENTIFICATION TIME DOMAIN METHODS FOR FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 29-33,23. doi: 10.13204/j.gyjz201308006
    [10]Yan Anzhi, Sun Haili, Lu Jingjing, Zhang Zhanqian, He Na. TMD CONTROL RESEARCH OF HIGH-RISE REINFORCED CONCRETE FRAME SUBJECTED TO RECTANGULAR CYCLIC IMPULSE EXCITATION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 6-10,118. doi: 10.13204/j.gyjz201104002
    [11]Zhang Wuyu, Wang Xuefeng, Gan Yi, Tian Dongjun, Xin Yuanyue. THE INFLUENCE OF OFF-CENTER HITTING ON THE SIGNALS IN HIGH STRAIN DYNAMIC TEST[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 95-98,60. doi: 10.13204/j.gyjz201008022
    [12]Hu Jing Li, Xin-ping, Qu Wei-lian. FILTERING AND NOISE CANCELING OF TDR SIGNAL BASED ON WAVELET TRANSFORM[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 84-87,95. doi: 10.13204/j.gyjz200712020
    [13]Hu Jing, Li Xinping, Qu Weilian. MULTI_SCALE ANALYSIS OF GEOTECHNICAL DEFORMATION MONITORING SIGNALS BY TIME DOMAIN REFLECTOMETRY BASED ON WAVELET TRANSFORM[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 50-54. doi: 10.13204/j.gyjz200702013
    [14]Dong Ping, Chen Zhaoping. EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE OF THE RECTANGLE TUNED LIQUID DAMPER IN STRUCTURAL VIBRATION CONTROL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 8-10. doi: 10.13204/j.gyjz200602003
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.8 %FULLTEXT: 5.8 %META: 88.3 %META: 88.3 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 18.4 %上海: 18.4 %中山: 1.0 %中山: 1.0 %北京: 8.7 %北京: 8.7 %十堰: 1.0 %十堰: 1.0 %台州: 1.0 %台州: 1.0 %合肥: 1.0 %合肥: 1.0 %天津: 1.0 %天津: 1.0 %安顺: 1.9 %安顺: 1.9 %常德: 3.9 %常德: 3.9 %张家口: 1.0 %张家口: 1.0 %成都: 1.9 %成都: 1.9 %新乡: 2.9 %新乡: 2.9 %昆明: 4.9 %昆明: 4.9 %武汉: 1.0 %武汉: 1.0 %济南: 1.0 %济南: 1.0 %澳门: 1.0 %澳门: 1.0 %福州: 1.9 %福州: 1.9 %芒廷维尤: 14.6 %芒廷维尤: 14.6 %芝加哥: 1.0 %芝加哥: 1.0 %西宁: 1.9 %西宁: 1.9 %赣州: 1.0 %赣州: 1.0 %运城: 4.9 %运城: 4.9 %连云港: 2.9 %连云港: 2.9 %郑州: 1.0 %郑州: 1.0 %金华: 1.9 %金华: 1.9 %银川: 1.9 %银川: 1.9 %长沙: 1.9 %长沙: 1.9 %青岛: 1.0 %青岛: 1.0 %其他上海中山北京十堰台州合肥天津安顺常德张家口成都新乡昆明武汉济南澳门福州芒廷维尤芝加哥西宁赣州运城连云港郑州金华银川长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(8) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return