Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Fang Enquan, Li Jinshun, Zhang Leishun. ANALYSIS ON THE INTERFACE BOND PERFORMANCE OF CFRP-CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 66-69. doi: 10.13204/j.gyjz200707020
Citation: ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209

Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas

doi: 10.3724/j.gyjzG22090209
  • Received Date: 2022-09-02
    Available Online: 2024-05-29
  • By studying the variations of bearing capacity characteristics of two bored piles before and after being grouted, the radius of the plastic influential zone of cement pastes after being compactedly grouted at pile ends was derived by Vesic’ s theory. A single pile model and pile group models considering different quantities of piles, pile spacing, and grouting conditions were respectively constructed, in which the pile spacing was 2 to 6-times pile diameters for 2×2 pile groups and 3-times pile diameters for 3×3 pile groups. Then, the effect of grouting at pile ends on settlement, pile end resistance, pile side resistance, and ratios of pile end resistance and total resistance were studied. The conclusions were that the grouting bearing capacity efficiency for pile group foundations dropped with an increase in pile quantities in the same pile space. The order of the bearing capacity of 2×2 pile group foundations from large to small was the foundation with pile space of 5-, 6-, 4-, and 3-times pile diameters. When the pile spacing was 5-times pile diameters, the bonding effect of expanding heads of pile ends and pile group effect were maximized. In the same working condition, the ratio of end resistance and total resistance was significantly enhanced after being grouted, while in the same quantity of piles, the ratio of end resistance and total resistance dropped gradually with an increase in pile space. When the pile space was smaller, the end resistance of piles increased more apparently than the side friction resistance of piles. As the ferrule effect by side piles, corner piles and surrounding soil on middle piles in settlement processes of pile foundations, lateral friction resistance of corner piles and side piles worked earlier than that of middle piles. The order of lateral friction resistance from large to small was that of corner piles, side piles and middle piles.
  • [1]
    ZHOU Z J, WANG K C, FENG H M, et al. Centrifugal model test of post-grouting pile group in loess area[J]. Soil Dynamics and Earthquake Engineering, 2021, 151:89-104.
    [2]
    CHEN Y J, LIN W Y, Topacio A, et al. Evaluation of interpretation criteria for drilled shafts with tip post-grouting[J]. Soils and Foundations, 2021, 61(5):1354-1369.
    [3]
    ZHOU Z J, XU F, LEI J T, et al. Experimental study of the influence of different hole-forming methods on the bearing characteristics of the post-grouting pile in loess areas[J/OL]. Transportation Geotechnics, 2021, 27[2022-09-02]. https://doi.org/10.1016/j.trgeo.2020.100423.
    [4]
    刘亦民,饶少华,万志辉,等.超高层建筑大直径钻孔灌注桩后压浆技术的应用与研究[J].建筑结构, 2022, 52(增刊1):2793-2797.
    [5]
    RUIZ M E, PANDO M A. load transfer mechanisms of tip post-grouted drilled shafts in sand[C]//Proceedings of International Foundation Congress and Equipment Expo 2009. Reston:ASCE, 2009:23-30.
    [6]
    戴国亮,万志辉.后压浆桩增强效应作用机制及荷载沉降关系研究[J].岩土工程学报, 2017, 39(12):2235-2244.
    [7]
    张志彤,龚维明,解江,等.后压浆桩竖向承载力概率极限状态设计方法(英文)[J]. Journal of Southeast University (English Edition), 2022, 38(2):166-170.
    [8]
    NISHIMURA S, TAKEHANA K, MORIKAWA Y, et al. Experimental study of stress changes due to compaction grouting[J] Soils and Foundations, 2011, 51(6):1037-1049.
    [9]
    THIYYAKKANDI S, MCVAY M, BLOOMQUIST D, et al. Experimental study, numerical modeling of an axial prediction approach to base grouted drilled shafts in cohesionless soils[J]. Acta Geot Technica, 2014, 9(3):439-454.
    [10]
    李龙起,赵皓璆.竖直荷载作用下倾斜群桩受力及桩身变形性状研究[J].重庆交通大学学报(自然科学版), 2022, 41(3):72-78.
    [11]
    任光明,伍禹安,范荣全,等.粉质黏土地区微型桩群桩基础群桩效应研究[J].成都理工大学学报(自然科学版), 2022, 49(1):111-118.
    [12]
    ZHANG R K, SHI M, ZHANG H, et al. The enhancement effect analysis of pile-base post-grouting piles[J]. Applied Mechanics and Materials, 2012(170/171/172/173):227-231.
    [13]
    WANG B, ZHANG J. Mechanical mechanism of the post-grouting pile[J]. Applied Mechanics and Materials, 2013, 351, 352:510-514.
    [14]
    FANG K, ZHAO T B, TAN Y L, et al. Prediction of grouting penetration height along the shaft of base grouted pile[J/OL]. Journal of Marine Science and Engineering, 2019, 7(7)[2022-09-02]. https://doi.org/10.3390/jmse7070212.
    [15]
    孔锴.饱和含黏性土砾石层中桩端后压浆设计参数优化研究[D].南京:东南大学, 2016.
    [16]
    刘颖,张立明,郑刚.不同长度单桩桩端压浆效果有限元分析[J].岩土工程学报, 2011, 33(增刊2):88-94.
    [17]
    熊彩凤,徐甫,冯泓鸣,等.黄土地区桥梁灌注桩桩端后注浆优化室内模型试验研究[J].铁道科学与工程学报, 2022(6):1-9.
    [18]
    WAN Z H, DAI G, LGONG W M. Field study on post-grouting effects of cast-in-place bored piles in extra-thick fine sand lavers[J]. Acta Geotechnica, 2019, 14(5):1357-1377.
    [19]
    薛振年,冯泓鸣,任晨宁,等.黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验[J].长安大学学报(自然科学版), 2021, 41(6):19-28.
    [20]
    朱铮.钻孔灌注桩后压浆参数研究[D].南京:东南大学, 2020.
    [21]
    周亚龙,王旭,张延杰,等.灌注桩基础桩底复合式后注浆及承载特性研究[J].岩土工程学报, 2022, 44(10):1-10.
    [22]
    赵春风,刘鹏伟,赵程,等.黏性土中桩侧后注浆单桩抗压承载性能室内模型试验研究[J/OL].土木与环境工程学报(中英文), 1-7[2024-05-06]. http://kns.cnki.net/kcms/detail/50.1218. TU.20220309.1521.002.html.
    [23]
    周志军,徐天宇,徐甫,等.黄土地区不同成孔方式灌注桩压浆前后承载特性[J].交通运输工程学报, 2021, 21(4):84-93.
    [24]
    LU Y, TAN Y, LAN H. full-scale load testing of 75-90 m long post-grouted drilled shafts in Suzhou stiff clay[J]. Test Eval, 2019, 47(1):1-26.
    [25]
    POULOS H G. Analysis of the settlement of pile groups[J]. Geotechnique, 1968, 18(4):449-471.
    [26]
    任青,黄茂松.分层地基中柔性高承台群桩基础的竖向振动特性[J].土木工程学报, 2009, 42(4):107-113.
    [27]
    赫中营,叶爱君.群桩效应对砂土地基中高桩承台群桩基础抗震性能的影响[J].土木工程学报, 2014, 47(1):117-126.
    [28]
    凌贤长,唐亮.液化场地桩基侧向响应分析中p-y曲线模型研究进展[J].力学进展, 2010, 40(3):250-262.
    [29]
    王晓伟, GUILLERMO B,叶爱君,等.砂土中桥梁高桩承台基础的抗震延性能力参数分析[J].土木工程学报, 2018, 51(5):112-121.
    [30]
    朱云祥,陈哲,施首健.单桩竖向承载力试验的有限元模拟[J].低温建筑技术, 2020, 260(2):107-110.
    [31]
    王先军,周文宇,蒋鑫. ANSYS在模拟桩土接触中的应用[J].森林工程, 2006(3):49-51.
    [32]
    王幼青,周宏.桩基承台阻力及载荷沉降关系研究[J].低温建筑技术, 2006(4):94-95.
    [33]
    王瑞芳. ANSYS分析灌注桩的桩土共同工作机理[J].武汉科技大学学报(自然科学版), 2006(3):293-296.
    [34]
    瞿书舟,高志伟,唐天国.竖向静载下群桩承载力及变形分析[J].建筑结构, 2017, 47(增刊1):1054-1058.
    [35]
    杜思义,石磊.竖向荷载下群桩受力特性研究[J].郑州大学学报(工学版), 2015, 36(4):67-71.
    [36]
    CHANDRASEKARAN S S, BOOMINATHAN A, DODAGOUDAR G R. Dynamic response of laterally loaded pile groups in clay[J]. Journal of Earthquake Engineering, 2012, 17(1):33-53.
    [37]
    DANNO K, ISOBEK, KIMURA M. Pile group effect on end bearing capacity and settlement of pile foundation[J]. Japanese Geotechnical Journal, 2008, 3(1):73-83.
    [38]
    孔纲强,顾红伟,周立朵,等.低承台扩底模形桩群桩效应系数研究[J].岩土力学, 2016, 37(增刊2):461-468.
    [39]
    戴国亮,戴永兴,茅燕兵,等.软土群桩原位足尺试验研究[J].岩土工程学报, 2015, 37(增刊2):158-163.
    [40]
    VESIC A S. Expansion of cavities in infinite soil mass[J]. Soil Mech Found Div, ASCE, 1972, 98(SM3):265-290.
    [41]
    龚维明,戴国亮,黄根生.大型深水桥梁钻孔桩桩端后压浆技术[M].北京:人民交通出版社, 2009.
    [42]
    李锋,王康超,朱珊珊,等.黄土地区桩端注浆群桩承载特性[J].铁道科学与工程学报, 2021, 18(12):3210-3218.
  • Relative Articles

    [1]JIANG Feng, LU Tao, MAO Yongping, KOU Zhao, QIN Huihui, ZHOU An. Quasi-Static Tests on Seismic Performance of Centrifugal Concrete-Filled Steel Tube Piles[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 233-239. doi: 10.3724/j.gyjzG22120807
    [2]ZHOU Xin, WANG Xinwu, YU Yongqiang, LI Tong. Quasi-Static Test Study on Eccentrically Braced Steel Frames with Replaceable Links After Earthquake[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 122-128. doi: 10.13204/j.gyjzG20101907
    [3]ZHANG Guowei, AN Jianing, GAO Haizhi, ZHANG Wenli, QIN Changan, XUE Hongjing, ZHANG Meng, WANG Haoqiang, WANG Yaxian. Research on Seismic Performance of Repaired RC Frames with Prefabricated Cladding Panels[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 31-37,95. doi: 10.13204/j.gyjzG22080212
    [4]WANG Peng, YU Bin, SHI Qingxuan, WANG Feng. Experimental Research on Seismic Performance of New-Type Steel Reinforced Concrete Composite Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 113-120,127. doi: 10.13204/j.gyjzG21072801
    [5]ZHOU Tiegang, WANG Xin, ZHANG Zaiyu, MA Ben, ZHU Ruizhao, DENG Mingke. EXPERIMENTAL RESEARCH ON ASEISMIC PERFORMANCES OF ROWLOCK WALLS STRENGTHENED WITH ECC[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 132-137. doi: 10.13204/j.gyjzG20061402
    [6]LUO Yuqi, GU Qian, ZHAO Duanfeng, TIAN Shui, TAN Yuan. RESEARCH ON ASEISMIC PERFORMANCES OF T-SHAPED DOUBLE-SIDED COMPOSITED CONCRETE SHEAR WALLS WITH CONSTRUCTIONAL EDGE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 90-97. doi: 10.13204/j.gyjzG21010604
    [7]LYU Yuangui, HU Longping, ZHANG Xiangchao, ZHANG Heng, LI Jianchuang, YU Min, CHI Yin. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF T-SHAPED PREFABRICATED CONCRETE SHEAR WALL CONNECTED WITH A VERTICAL SEAM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 56-62. doi: 10.13204/j.gyjz201908300010
    [8]CHONG Xun, SHA Huiling, XIE Linlin, Feng Yulong, HOU Linbing, HUO Pu. STUDY ON ASEISMIC DESIGN OF RC FRAME STRUCTURE WITH ENERGY DISSIPATIVE OUTDOOR-WALL CLADDING PANELS BASED ON ENERGY EQUILIBRIUM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 98-106. doi: 10.13204/j.gyjzG20072305
    [9]JIANG Lianjie, BAI Guoliang, GAO Li, LUO Haiyan, ZHU Hao, LANG Yan. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF STEEL REINFORCED CONCRETE COLUMNS UNDER DIFFERENT LOADING SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 112-118. doi: 10.13204/j.gyjzG19100804
    [10]YU Haifeng, HAO Mengtian, MA Jiansuo, YU Ke. QUASI-STATIC TEST AND NUMERICAL ANALYSIS OF PREFABRICATED SHEAR WALL WITH VERTICAL CONNECTIONS OF EMBEDDED STEEL PLATE AND BOLT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 24-30. doi: 10.13204/j.gyjz202005005
    [11]Ding Hongyan, Yang Baokun, Zhang Puyang, Qiao Shuai. EXPERIMENTAL RESEARCH ON SEISMIC PERFORMANCE OF STORY-ADDED REINFORCED CONCRETE FRAME[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 49-54. doi: 10.13204/j.gyjz201505012
    [12]Liu Zuqiang, Xue Jianyang, Zhao Hongtie, Gao Liang. EXPERIMENTAL STUDY OF SEISMIC BEHAVIORS OF LATTICE STEEL REINFORCED CONCRETE FRAME WITH SPECIAL-SHAPED COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 151-155.
    [13]Li Qingning, He Di, Wang Peng, Jiang Weishan. EXPERIMENTAL STUDY OF SEISMIC BEHAVIOR OF THE STEEL TUBULAR ASSEMBLY COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 11-15.
    [14]Xu Ming, Peng Zhu, Chen Zhongfan. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIOR OF LOAD-BEARING WALL WITH COMPOUND INSULATION CONCRETE BLOCKS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(3): 61-66. doi: 10.13204/j.gyjz201303013
    [15]Dong Zhenhua, Han Qiang, Du Xiuli. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF CFRP CONFINED BRIDGE PIER WITH RECTANGULAR HOLLOW CROSS SECTION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 27-31. doi: 10.13204/j.gyjz201306007
    [16]Zhang Guangtai, Yu Xiaojun. EXPERIMENTAL STUDY ON BRICK WALLS STRENGTHENED WITH SIDED LATTICED STEEL PLATE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(3): 125-128. doi: 10.13204/j.gyjz201303026
    [17]Liu Chunyang, Li Zhenbao, Ma Hua, Han Jianqiang. EXPERIMENT STUDY ON ASEISMIC BEHAVIOR OF RC FRAME SPACE JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 67-70. doi: 10.13204/j.gyjz201106014
    [18]Wang Xiufen, Wang Tiecheng. EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF RC FRAMES WITH SPECIAL-SHAPED COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(5): 28-32. doi: 10.13204/j.gyjz201005005
    [19]Li Bing, Li Hongnan. RESEARCH ON QUASI-STATIC TEST OF REINFORCED CONCRETE SHEAR WALLS WITH DIFFERENT SHEAR-SPAN RATIO[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 32-36. doi: 10.13204/j.gyjz201009011
    [20]Ai Bing, Wu Minzhe, Guo Di, Wang lixin. EXPERIMENT ON SEISMIC BEHAVIOR OF 4-STORY R.C. FRAME WITH BROAD-LIMB SPECIAL SHAPE COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 11-13,10. doi: 10.13204/j.gyjz200702003
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.0 %FULLTEXT: 7.0 %META: 90.2 %META: 90.2 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.5 %其他: 24.5 %东莞: 0.7 %东莞: 0.7 %东营: 1.4 %东营: 1.4 %丽水: 0.7 %丽水: 0.7 %北京: 7.7 %北京: 7.7 %台州: 0.7 %台州: 0.7 %合肥: 0.7 %合肥: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大连: 1.4 %大连: 1.4 %天津: 0.7 %天津: 0.7 %太原: 1.4 %太原: 1.4 %宿州: 0.7 %宿州: 0.7 %广州: 1.4 %广州: 1.4 %张家口: 2.8 %张家口: 2.8 %成都: 1.4 %成都: 1.4 %扬州: 1.4 %扬州: 1.4 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.4 %杭州: 1.4 %汉中: 1.4 %汉中: 1.4 %深圳: 0.7 %深圳: 0.7 %温州: 0.7 %温州: 0.7 %湖州: 2.1 %湖州: 2.1 %漯河: 2.1 %漯河: 2.1 %石家庄: 2.1 %石家庄: 2.1 %芒廷维尤: 21.0 %芒廷维尤: 21.0 %芝加哥: 1.4 %芝加哥: 1.4 %衢州: 0.7 %衢州: 0.7 %西宁: 5.6 %西宁: 5.6 %贵阳: 1.4 %贵阳: 1.4 %运城: 6.3 %运城: 6.3 %邢台: 1.4 %邢台: 1.4 %邯郸: 0.7 %邯郸: 0.7 %重庆: 0.7 %重庆: 0.7 %铁岭: 0.7 %铁岭: 0.7 %其他东莞东营丽水北京台州合肥嘉兴大连天津太原宿州广州张家口成都扬州晋城朝阳杭州汉中深圳温州湖州漯河石家庄芒廷维尤芝加哥衢州西宁贵阳运城邢台邯郸重庆铁岭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return