Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708
Citation: WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708

Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures

doi: 10.3724/j.gyjzG22082708
  • Received Date: 2022-08-27
    Available Online: 2024-05-29
  • The rock content in freezing-thawing cycles is one of the key factors influencing the hydro-thermal transfer and freezing-thaw transferring characteristics of soil-rock mixtures. To study the effect of freezing-thawing cycles on hydro-thermal transfer, frost heave and thawing settlement of soil-rock mixtures, the soil-rock mixtures composed by Qinghai-Tibet silty clay and gravel with different stone content ratios (10%, 25%, 40%) were selected as research objects, and 10 unidirectional freezing-thawing cycles were conducted. The results indicated that the differences in the temperature and unfrozen water content of soil-rock mixtures during the freezing-thaw cycles had a strong correlation with the rock content. With an increase in the rock content, the completely frozen time for soil-rock mixtures has been extended, and the variable rate of the unfrozen wate content decreased. The difference of buried depth mainly influenced the temperature transfer of soil-rock mixture, and had an indirect effect on the variation of volumetric unfrozen water. For the samples with stone contents of 10% and 40%, the displacement change was manifested as shrinkage during freezing and expansion after thawing, and with an increase in the stone content, the shrinkage of specimens during freezing tended to decrease.
  • loading
  • [1]
    廖秋林,李晓,董艳辉,等.川藏公路林芝-八宿段地质灾害特征及形成机制初探[J].地质力学学报, 2004, 10(1):33-39.
    [2]
    中华人民共和国建设部.岩土工程勘察规范:GB 50021-2001[S].北京:中国建筑工业出版社, 2009.
    [3]
    LI X, LIAO Q L, HE J M. In situ tests and a stochastic structural model of rock and soil aggregate in the Three Gorges reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3):494-500.
    [4]
    殷跃平.长江三峡库区移民迁建新址重大地质灾害及其防治研究[M].北京:地质出版社, 2004.
    [5]
    CHANG W J, THITIBHORN P. Effects of gravel content on shear resistance of rockly soils[J]. Engineering Geology, 2016, 207:78-90.
    [6]
    CHU F Y. Study on engineering characteristics of coarse-grained soil based on large-scale triaxial test[J]. Materials Science and Engineering Technology, 2014, 936:1395-1400.
    [7]
    ZHANG Z L, XU W J, XIA W, et al. Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:317-322.
    [8]
    王宇,李晓,赫建明,等.土石混合体细观特性研究现状及展望[J].工程地质学报, 2014, 22(1):112-123.
    [9]
    XU W J, HU L M, GAO W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:166-178.
    [10]
    舒志乐,刘新荣,刘保县,等.土石混合体粒度分形特性及其与含石量和强度的关系[J].中南大学学报(自然科学版), 2010, 41(3):1096-1101.
    [11]
    WANG T L, YUE Z R, MA C, et al. An experimental study on the frost heave properties of coarse grained soils[J]. Transportation Geotechnics, 2014, 1(3):137-144.
    [12]
    冯上鑫,柴军瑞,许增光,等.基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J].岩土力学, 2018, 39(8):2886-2894.
    [13]
    ZHOU Z, YANG H, XING K, et al. Prediction models of the shear modulus of normal or frozen soil-rock mixtures[J]. Geomechanics and Engineering, 2018, 15(2):783-791.
    [14]
    BAGHERZADEH-KHALKHALI A, MIRGHASEMI A A. Numerical and experimental direct shear tests for coarse-grained soils[J]. Particuology, 2009, 7(1):83-91.
    [15]
    何鹏飞,马巍,穆彦虎,等.冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J].岩土工程学报, 2020, 42(2):299-307.
    [16]
    贾学明,柴贺军,郑颖人.土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J].岩土力学, 2010, 31(9):2695-2703.
    [17]
    LI S H, ZHAO M H, WANG Y N, et al. A new numerical method for DEM-block and particle model[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41:414-418.
    [18]
    金磊,曾亚武,李欢,等.基于不规则颗粒离散元的土石混合体大三轴数值模拟[J].岩土工程学报, 2015, 37(5):829-838.
    [19]
    XING K, ZHOU Z, YANG H, et al. Macro-meso freeze-thaw damage mechanism of soil-rock mixtures with different rock contents[J]. International Journal of Pavement Engineering, 2018, 21(1):9-19.
    [20]
    徐文杰,胡瑞林.虎跳峡龙蟠右岸土石混合体粒度分形特征研究[J].工程地质学报, 2006(4):496-501.
    [21]
    刘泉声,黄诗冰,康永水,等.裂隙岩体冻融损伤研究进展与思考[J].岩石力学与工程学报, 2015, 34(3):452-471.
    [22]
    刘泉声,黄诗冰,康永水,等.岩体冻融疲劳损伤模型与评价指标研究[J].岩石力学与工程学报, 2015, 34(6):1116-1127.
    [23]
    KONG Q Z, WANG R L, SONG G B, et al. Monitoring the soil freeze-thaw process using piezoceramic-based smart aggregate[J]. Journal of Cold Regions Engineering, 2014, 28(2):1-16.
    [24]
    HU T F, LIU J K ZHU B Z, et al. Study on sliding characteristics and controlling measures of colluvial landslides in Qinghai-Tibet Plateau[J]. Procedia Engineering, 2016, 143:1477-1484.
    [25]
    唐丽云,王鑫,邱培勇,等.冻土区土石混合体冻融交界面剪切性能研究[J].岩土力学, 2020, 41(10):3225-3235.
    [26]
    胡峰,李志清,孙凯,等.冻土石混合体、冰石混合物和冻土在压、拉作用下的破坏特征对比[J].岩石力学与工程学报, 2021, 40(1):2923-2934.
    [27]
    LU J G, WAN X S, YAN Z R, et al. Hydro-thermal characteristics and deformation behaviors of silty clay subjected to freeze-thaw cycles[J]. Arabian Journal of Geosciences, 2022, 15(5):446-455.
    [28]
    中华人民共和国交通运输部.公路土工试验规程:JTG 3430-2020[S].北京:人民交通出版社, 2020.
    [29]
    LU J G, ZHANG M Y, ZHANG X Y, et al. Experimental study on the freezing-thawing deformation of a silty clay[J]. Cold Regions Science and Technology, 2018, 151:19-27.
    [30]
    ZHANG Y G, LU Y, LIU S H, et al. Volumetric behavior of an unsaturated clayey soil-rock mixture subjected to freeze-thaw cycles:a new insight[J]. Cold Regions Science and Technology, 2022, 201:103608-103617.
    [31]
    DAGESSE D F. Freezing cycle effects on water stability of soil aggregates[J]. Canadian Journal of Soil Science, 2013, 93(4):473-483.
    [32]
    PERFECT E, LOON W K P V, KAY B D, et al. Influence of ice segregation and solutes on soil structural stability[J]. Canadian Journal of Soil Science, 1990, 70(4):571-581.
    [33]
    COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8):1689-1718.
    [34]
    SUN K, ZHOU A N. A multisurface elastoplastic model for frozen soil[J]. Acta Geotechnica, 2021, 16(11):3401-3424.
    [35]
    WANG S F, YANG Z H, YANG P. Structural change and volumetric shrinkage of clay due to freeze-thaw by 3D X-ray computed tomography[J]. Cold Regions Science and Technology, 2017, 138:108-116.
    [36]
    邱国庆,刘经仁,刘鸿绪.冻土学辞典(汉、英、俄对照)[M].兰州:甘肃科学技术出版社, 1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return