Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHENG Baofeng, SHU Yinjia, SHU Ganping, LI Lei. Tests and Design on the Bending Capacity of Flexural Acrylic Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 156-162. doi: 10.3724/j.gyjzG22011706
Citation: ZHENG Baofeng, SHU Yinjia, SHU Ganping, LI Lei. Tests and Design on the Bending Capacity of Flexural Acrylic Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 156-162. doi: 10.3724/j.gyjzG22011706

Tests and Design on the Bending Capacity of Flexural Acrylic Beams

doi: 10.3724/j.gyjzG22011706
  • Received Date: 2022-01-17
    Available Online: 2024-10-18
  • In order to study the failure mode and the bending capacity of fluxural acrylic beams, a series of tests were conducted on the acrylic and flexural members, so as to obtain the material properties, failure modes and bending capacity. Besides, the DIC technology was used to obtain the full-field strain distribution. Test results indicated that PMMA had asymmetric material properties, and compression strength was higher than tensile strength. The combination of the fracture in tension zone and burst in compression zone was the major failure mode, and the failure would happen when the tensile strain reached the ultimate strain in tension. The strain distribution in the mid-span met the plan-section assumption, and the neutral axis was slightly above the centroid of the cross-section. Elastic model, elastic-plastic model and simplified model were used to calculate the bending capacity and deflection. Analysis showed that the predictions of elastic model were lower than the test results, while the predictions of elastic-plastic model and the simplified model matched the test result well. It was recommended to use the simplified model to predict the bending capacity and deflections of flexural acrylic beams due to convenient in calculation.
  • loading
  • [1]
    吴衡毅,马钢,夏源明.PMMA低、中应变率单向拉伸力学性能的实验研究[J].实验力学,2005(2):193-199.
    [2]
    王综轶,王元清,杜新喜,等.不同温度下有机玻璃厚板的准静态拉伸试验研究[J].东南大学学报(自然科学版),2018,48(1):132-137.
    [3]
    范瑞鹤. 基于有机玻璃拉伸试验的本构关系拟合及有限元实例分析[D]. 哈尔滨:哈尔滨工业大学,2012.
    [4]
    黄福增,郭伟国.MDYB-3有机玻璃在不同温度不同应变率下的性能[J].材料科学与工程学报,2007(4):582-586.
    [5]
    管公顺,王少恒,成方圆.不同加载应变率下有机玻璃的压缩破坏与力学行为[J].航空材料学报,2012,32(6):96-101.
    [6]
    郭伟国,史飞飞.不同载荷方式下MDYB-3有机玻璃的变形与破坏行为[J].航空学报,2008(6):1517-1525.
    [7]
    陈富财. 支柱式有机玻璃球探测器结构设计[D].杭州:浙江大学,2014.
    [8]
    刘伟,高宗战,刘永寿,等.航空MDYB-3定向有机玻璃蠕变行为温度效应试验研究[J].材料工程,2009(7):47-49,82.
    [9]
    周凡. 有机玻璃在液闪中的蠕变行为及耐压球壳稳定性研究[D].杭州:浙江大学,2017.
    [10]
    陈薇,屈平,张爱锋.基于压缩蠕变试验的观察窗蠕变特性研究[J].船舶力学,2021,25(1):73-79.
    [11]
    熊伟腾, 王云英, 范金娟, 等. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程, 2020,48(10):96-104.
    [12]
    朱兆祥,徐大本,王礼立.环氧树脂在高应变率下的热粘弹性本构方程和时温等效性[J].宁波大学学报,1988(1):58-68.
    [13]
    王元清,王综轶,杜新喜,等.超大型中微子探测器有机玻璃球与不锈钢网壳方案的设计优化分析[J].工程力学,2016,33(3):10-17.
    [14]
    李华峰,朱忠义,束伟农,等.江门中微子实验中心探测器主体不锈钢结构设计研究[J].建筑结构,2018,48(20):92-97.
    [15]
    王综轶,王元清,周燕,等.江门中微子探测器承载性能的影响因素分析[J].沈阳建筑大学学报(自然科学版),2015,31(3):418-425.
    [16]
    王综轶,王元清,杜新喜,等.有机玻璃与不锈钢连接节点承载性能试验研究[J].东南大学学报(自然科学版),2016,46(1):105-109.
    [17]
    中国国家标准化管理委员会. 塑料拉伸性能的测定 第1部分:总则: GB/T 1040.1—2018 [S]. 北京: 中国标准出版社,2019.
    [18]
    ASTM Committee D20. Standard Test Method for Tensile Properties of Plastics:D638-14[S]. United States: ASTM International, 2015.
    [19]
    中国国家标准化管理委员会. 塑料 压缩性能的测定: GB/T 1041—2008 [S]. 北京: 中国标准出版社, 2008.
    [20]
    中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008 [S]. 北京: 中国标准出版社,2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (43) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return