Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MOU Kun-ting, WEI Yang, WANG Gao-fei, DONG Feng-hui, ZHENG Kai-qi. Mechanical Properties of Double-Tube Seawater and Sea Sand Concrete Columns with Built-in CFRP Tubes Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 1-9. doi: 10.13204/j.gyjzG22030410
Citation: WANG Ning, YAN Jing-liang, LIU Xiao-gang, YUE Qing-rui, ZHENG Ming-zhao. Research on Shear Connection Performance of Prefabricated Steel-Concrete Composite Beams[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 121-128. doi: 10.13204/j.gyjzg22030601

Research on Shear Connection Performance of Prefabricated Steel-Concrete Composite Beams

doi: 10.13204/j.gyjzg22030601
  • Received Date: 2022-03-06
    Available Online: 2023-02-06
  • In order to investigate the performance of shear connections of new profabricated steel-concrete composite beam, 4 types of shear connection construction were designed, including connections with local laminated region, with UHPC (ultra-high performance concrete) post-casting belt, with UHPC slotted post-casting belt and with slotted post-casting belt having post-placed shear rebar. Totally 10 specimens were fabricated and tested by static push-out test. Using the experimental phenomena and test data, the effects of different configurations, including diameter of studs, strength of post-casting concrete, shear slot and shear rebar in slot, on the failure mode, crack mode, load-slip characteristics and ultimate bearing capacity of prefabricated composite beams were analyzed. The results indicated the bearing capacity of prefabricated composite beams increased with the increase of stud diameter and post-casting concrete strength. UHPC post-casting belt configuration and post-placed shear rebars could significantly improve the shear capacity of specimens. The longitudinal shear mechanism of the prefabricated composite beam with post-casted UHPC was different from the traditional composite beam, and the interface between prefabricated slab and post-casted UHPC might become weak area under the interfacial shear force, and fail before studs or the concrete around studs.
  • [1]
    JOHNSON R P.Composite structures of steel and concrete:beams, slabs, columns, and frames for buildings[M].Oxford:Blackwell, 2004.
    [2]
    聂建国, 刘明, 叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社, 2003.
    [3]
    LAM D, EL-LOBODY E.Behavior of headed stud shear connectors in composite beam[J].Journal of Structural Engineering, 2005, 131(1):96-107.
    [4]
    DING F, YIN G, WANG H, et al.Static behavior of stud connectors in bi-direction push-off tests[J].Thin-Walled Structures, 2017, 120:307-318.
    [5]
    PCI Industry Hankbook Committee.PCI design handbook:precast and prestressed concrete[S].Chicago:Prestressed Concrete Institute, 2017.
    [6]
    LAMA S S E, WONGA V, LEE R S M.Bonding assessment of semi-precast slabs subjected to flexural load and differential shrinkage[J].Engineering Structures, 2019, 187:25-33.
    [7]
    GIRHAMMAR U, PAJARI M.Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping[J].Construction and Building Materials, 2008, 22(8):1708-1722.
    [8]
    BARAN E.Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs[J].Engineering Structures, 2015, 98:109-117.
    [9]
    HOU H, LIU X, QIU B, et al.Experimental evaluation of flexural behavior of composite beams with cast-in-place concrete slabs on precast prestressed concrete decks[J].Engineering Structures, 2016, 126:405-416.
    [10]
    LIU J, HU H, LI J, et al.Flexural behavior of prestressed concrete composite slab with precast inverted T-shaped ribbed panels[J].Engineering Structures, 2022, 215.DOI: 10.1016/j.engstruct.2022.110687.
    [11]
    YUKSELA E, GULLUB A, DURGUN Y, et al.Z-type shear connector for interface of hollow-core slab and cast-in-place topping concrete[J].Engineering Structures, 2020, 214.DOI: 10.1016/j.engstruct.2020.110563.
    [12]
    MENEGOTTO M, MONTI G.Waved joint for seismic-resistant precast floor diaphragms[J].Journal of Structural Engineering, 2005, 131(10):1515-1525.
    [13]
    李青宁, 李书锋, 姜维山, 等.新型预应力空心楼盖抗剪性能试验研究[J].建筑结构, 2016, 46(10):43-49.
    [14]
    WANG D, SHI C, WU Z, et al.A review on ultra high performance concrete:Part II.Hydration microstructure and properties[J].Construction and Building Materials, 2015, 96:368-377.
    [15]
    JANG H O, LEE H S, CHO K, et al.Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC)[J].Construction and Building Materials, 2017, 152:16-23.
    [16]
    KIM Y J, CHIN W J, JEON S J.Interface shear strength at joints of ultra-high performance concrete structures[J].International Journal of Concrete Structures and Materials, 2018, 12(1):1-14.
    [17]
    TAYEH B A, BAKAR B H A, JOHARI M A M, et al.Evaluation of bond strength between normal concrete substrate and ultra high performance fiber concrete as a repair material[J].Procedia Engineering, 2013, 54:554-563.
    [18]
    FANG Z, JIANG H, XIAO J, et al.Shear performance of UHPC-filled pocket connection between precast UHPC girders and full-depth precast concrete slabs[J].Structures, 2021, 29:328-338.
    [19]
    HUSSEIN H H, SARGAND S M, AL-RIKABI F T, et al.Evaluation of ultra-high performance concrete grout performance under longitudinal shear[C]//Jon E.Zufelt.Congress on Technical Advancement.Minnesota:American Society of Civil Engineers, 2017:34-44.
    [20]
    GRAYBEAL B A.Behavior of field-cast ultra-high performance concrete bridge deck connections under cyclic and static structural loading[R].United States:Federal Highway Administration, 2010.
    [21]
    PERRY V H, ROYCE M.Innovative field-cast UHPC joints for precast bridge decks (full-depth precast deck panels), Oneonta, NY-Design, prototype testing and construction[C]//Concrete Bridge Conference:Achieving Safe, Smart & Sustainable Bridges.Phoenix Arizona, 2010.
    [22]
    Eurocode 4:Design of composite steel and concrete sturcture.part1. 1:general rules and rules for building:FNV 1994-1-1[S].2004.
    [23]
    DÖINGHAUS P, GORALSKI C, WILL N.Design rules for composite structures with high performance steel and high performance concrete[C]//International Conference on High Performance Materials in Bridges.Kona, Hawaii, USA:2001.
  • Relative Articles

    [1]HE Zhengwei, CHEN Yuhan, GU Jinben, TAO Yi, DOU Yafen. Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 149-159. doi: 10.3724/j.gyjzG24032002
    [2]WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805
    [3]LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
    [4]ZHANG Peng, YANG Siqi, DENG Yu, NI Miao, LING Daoyuan. Research on Mechanical Properties of Bamboo Winding Composite Pipe Reinforced Thin-Walled Steel Tube Composite Structures Under Axical Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 62-68. doi: 10.3724/j.gyjzG23010801
    [5]YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
    [6]LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605
    [7]HUANG Hui, LU Sifang, ZHANG Xiang, JIA Bin, LU Yonggang. Anti-implosion Performances of Steel Pipes Strengthened with CFRP Sheets[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 211-215. doi: 10.13204/j.gyjzG20031209
    [8]ZHANG Ying, WANG Rui, ZHAO Hui, AN Guoqing. Mechanical Properties of Octagonal Hollow Concrete Filled Steel Tube Short Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 113-119. doi: 10.13204/j.gyjzG20122411
    [9]LI Xiaozhong, ZHANG Sumei. Axial Compression Performance and Mechanical Property of CFST Columns Reinforced with Outer Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 122-130. doi: 10.13204/j.gyjzG22072710
    [10]CHEN Zongping, NING Fan. Experimental Research on Mechanical Properties of Concrete-filled Double-skin Square Steel Tubular (Oblique Inside and Straight Outside) Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 8-16. doi: 10.13204/j.gyjzG20102106
    [11]HU Xiaopeng, WU Xiao, PENG Gang. CALCULATION MODEL OF EARLY CARBONATION DEPTH OF MINERAL ADMIXTURE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 106-111. doi: 10.13204/j.gyjzG19112905
    [12]XIAO Chengzhi, GE Chenhe, WANG Zihan, SI Yu. TEST AND NUMERICAL ANALYSIS OF MECHANICAL PROPERTIES OF GROUTED MICRO-STEEL-PIPE PILES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 85-92. doi: 10.13204/j.gyjz202006014
    [13]CUI Yubo, WANG Jingfeng, SHEN Qihan, DING Zhaodong, LI Zhipeng. ANALYSIS AND DESIGN OF REINFORCED CONCRETE STUB COLUMNS WITH REBAR HRB635 UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 1-10. doi: 10.13204/j.gyjzG20062707
    [14]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [15]CHEN Zongping, ZHOU Ji. COMPARATIVE ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF RECYCLED CONCRETE SHORT COLUMN FILLED CIRCULAR AND SQUARE STEEL TUBE AFTER BEING SUBJECTED TO HIGH TEMPERATURES AND WATER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 150-157. doi: 10.13204/j.gyjz202002023
    [16]ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
    [17]Cao Dan Zhang Dachang, . COMPARISON AND ANALYSIS OF STEEL TUBULAR UNDER AXIAL COMPRESSION IN CHINESE AND FOREIGN CODES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 169-174. doi: 10.13204/j.gyjz201506033
    [18]Wang Xiaolu, Zha Xiaoxiong, Cang Youqing, Yu Min. EXPERIMENTAL AND THEORETICAL RESEARCH ON GFRP-CFST COMPOSITE COLUMN UNDER AXIAL COMPRESSIVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 25-29. doi: 10.13204/j.gyjz201106005
    [19]Liu Xiao, Wang Bing, Wang Lianguang. THE THEORETIC RESEARCH ON FLEXURAL BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE WITH H-SHAPED SECTION OR CROSS STEEL SECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 95-97. doi: 10.13204/j.gyjz200807024
    [20]Li Guangxing, Cai Jian, Yang Chun, Lin Fan. STUDY ON EQUIVALENT BEAM CALCULATING MODEL OF REINFORCED CONCRETE FLAT SLAB-T-COLUMN STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 54-56. doi: 10.13204/j.gyjz200706014
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.7 %FULLTEXT: 5.7 %META: 90.1 %META: 90.1 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.5 %其他: 19.5 %其他: 3.7 %其他: 3.7 %Elizabeth City: 0.2 %Elizabeth City: 0.2 %Girard: 0.5 %Girard: 0.5 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.2 %Hollywood: 0.2 %Malvern: 0.5 %Malvern: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Norman: 2.7 %Norman: 2.7 %Philadelphia: 0.2 %Philadelphia: 0.2 %Rochester: 0.2 %Rochester: 0.2 %State College: 0.2 %State College: 0.2 %Wixom: 0.5 %Wixom: 0.5 %上海: 1.7 %上海: 1.7 %上饶: 0.2 %上饶: 0.2 %丹佛: 0.5 %丹佛: 0.5 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %克孜勒苏: 0.2 %克孜勒苏: 0.2 %兰州: 0.5 %兰州: 0.5 %利特尔顿: 0.2 %利特尔顿: 0.2 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %北京: 5.7 %北京: 5.7 %华盛顿: 0.2 %华盛顿: 0.2 %南京: 2.2 %南京: 2.2 %南昌: 0.2 %南昌: 0.2 %卡尔斯鲁厄: 0.2 %卡尔斯鲁厄: 0.2 %卡罗尔顿: 0.2 %卡罗尔顿: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %商丘: 0.2 %商丘: 0.2 %圣路易斯: 0.2 %圣路易斯: 0.2 %坦佩: 0.2 %坦佩: 0.2 %士嘉堡: 0.2 %士嘉堡: 0.2 %大克罗伊茨: 0.2 %大克罗伊茨: 0.2 %大连: 0.5 %大连: 0.5 %天津: 1.7 %天津: 1.7 %娄底: 0.2 %娄底: 0.2 %安大略: 0.2 %安大略: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 1.2 %密蘇里城: 1.2 %巴拿马城: 0.5 %巴拿马城: 0.5 %布鲁克林区: 0.2 %布鲁克林区: 0.2 %常德: 0.2 %常德: 0.2 %广州: 3.4 %广州: 3.4 %廊坊: 0.7 %廊坊: 0.7 %开封: 0.2 %开封: 0.2 %张家口: 0.2 %张家口: 0.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.2 %晋城: 0.2 %杭州: 2.2 %杭州: 2.2 %查塔努加: 0.2 %查塔努加: 0.2 %柳州: 0.2 %柳州: 0.2 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %武汉: 1.7 %武汉: 1.7 %法拉盛: 0.2 %法拉盛: 0.2 %泽西: 0.5 %泽西: 0.5 %洛杉矶: 0.7 %洛杉矶: 0.7 %济南: 0.7 %济南: 0.7 %海口: 0.5 %海口: 0.5 %淮南: 0.2 %淮南: 0.2 %深圳: 0.2 %深圳: 0.2 %温尼伯: 0.5 %温尼伯: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %濮阳: 1.5 %濮阳: 1.5 %瑟普赖斯: 0.7 %瑟普赖斯: 0.7 %盐城: 0.2 %盐城: 0.2 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.7 %福州: 0.7 %科珀斯克里斯蒂: 0.2 %科珀斯克里斯蒂: 0.2 %纽约: 0.5 %纽约: 0.5 %绍曾德奥克斯: 0.2 %绍曾德奥克斯: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 5.7 %芒廷维尤: 5.7 %苏州: 1.0 %苏州: 1.0 %蒙哥马利: 0.5 %蒙哥马利: 0.5 %襄阳: 0.2 %襄阳: 0.2 %西宁: 9.1 %西宁: 9.1 %西安: 2.2 %西安: 2.2 %诺沃克: 0.2 %诺沃克: 0.2 %诺瓦托: 0.7 %诺瓦托: 0.7 %贝瑟默: 0.5 %贝瑟默: 0.5 %贵阳: 0.2 %贵阳: 0.2 %迈阿密: 0.2 %迈阿密: 0.2 %运城: 2.2 %运城: 2.2 %连云港: 0.2 %连云港: 0.2 %迪拜: 0.2 %迪拜: 0.2 %郑州: 1.7 %郑州: 1.7 %都伯林: 0.2 %都伯林: 0.2 %镇江: 0.2 %镇江: 0.2 %长春: 0.5 %长春: 0.5 %长沙: 0.5 %长沙: 0.5 %青岛: 1.0 %青岛: 1.0 %麦迪逊: 0.2 %麦迪逊: 0.2 %其他其他Elizabeth CityGirardGwynn OakHollywoodMalvernNahantNormanPhiladelphiaRochesterState CollegeWixom上海上饶丹佛伊利诺伊州克孜勒苏兰州利特尔顿加利福尼亚北京华盛顿南京南昌卡尔斯鲁厄卡罗尔顿厦门台州合肥呼和浩特哈尔滨商丘圣路易斯坦佩士嘉堡大克罗伊茨大连天津娄底安大略宜昌宣城密蘇里城巴拿马城布鲁克林区常德广州廊坊开封张家口徐州成都扬州昆明晋城杭州查塔努加柳州森尼韦尔武汉法拉盛泽西洛杉矶济南海口淮南深圳温尼伯温州湖州濮阳瑟普赖斯盐城盘锦石家庄福州科珀斯克里斯蒂纽约绍曾德奥克斯绵阳芒廷维尤苏州蒙哥马利襄阳西宁西安诺沃克诺瓦托贝瑟默贵阳迈阿密运城连云港迪拜郑州都伯林镇江长春长沙青岛麦迪逊

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(0) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return