Citation: | LIU Jian, ZHAO Yu, WANG Fei-cheng, LIU Zhang-jiang, CENG Rong-sen, ZHOU Guan-gen, QI Yu-liang, REN Da, CHEN Yuan, XIAO Hai-peng, PENG Lin-miao. Research on Neural Network Analysis Model of Bearing Capacity of Steel Tubed Steel Reinforced Concrete Cylinder[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 147-152,120. doi: 10.13204/j.gyjzg22010519 |
[1] |
刘坚.钢与混凝土组合结构设计原理[M].北京:科学出版社, 2005.
|
[2] |
刘坚, 田勇, 刘长江, 等.圆钢管钢筋再生混凝土短柱轴压承载力[J].建筑科学与工程学报, 2020, 37(5):97-105.
|
[3] |
刘坚, 张鹏程, 江进, 等.圆钢管 H 型钢再生混凝土短柱的轴压承载力分析[J].西南交通大学学报, 2020, 55(6):1280-1286.
|
[4] |
CHENG G, ZHOU X, LIU J, et al.Seismic behavior of circular tubed steel-reinforced concrete column to steel beam connections[J].Thin-Walled Structures, 2019, 138(5):485-495.
|
[5] |
张鹏程.钢管(约束)H型钢再生混凝土短柱轴压力学性能研究[D].广州:广州大学, 2020.
|
[6] |
YU Q, TAO Z, LIU W, et al.Analysis and calculations of steel tube confined concrete (STCC) stub columns[J].Journal of Constructional Steel Research, 2010, 66(1):53-64.
|
[7] |
GEYER P, SINGARAVEL S.Component-based machine learning for performance prediction in building design[J].Applied Energy, 2018, 228:1439-1453.
|
[8] |
TRUNG N T, SHAHGOLI A F, ZANDI Y, et al.Moment-rotation prediction of precast beam-to-column connections using extreme learning machine[J].Structural Engineering and Mechanics, 2019, 70(5):639-647.
|
[9] |
幸坤涛, 赵国藩, 岳清瑞.高强钢管混凝土核心柱抗震性能神经网络评估[J].工业建筑, 2002, 32(10):63-65.
|
[10] |
刘坚著.钢结构高等分析的二阶非弹性理论与应用[M].北京:科学出版社, 2012:255-310.
|
[11] |
刘坚, 潘澎, 李东伦, 等.考虑楼板刚度贡献的梁柱节点半刚性连接弯矩-转角神经网络模型[J].建筑科学与工程学报, 2016, 33(1):99-105.
|
[12] |
AHMADI M, NADERPOUR H, KHEYRODDIN A.ANN model for predicting the compressive strength of circular steel-confined concrete[J].International Journal of Civil Engineering, 2017, 15:213-221.
|
[13] |
JAYALEKSHMI S, JEGADESH J S S, GOEL A.Empirical approach for determining axial strength of circular concrete filled steel tubular columns[J].Journal of The Institution of Engineers (India):Series A, 2018, 99(2):257-268.
|
[14] |
NADERPOUR H, NAGAI K, FAKHARIAN P, et al.Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods[J].Composite Structures, 2019, 215(5):69-84.
|
[15] |
张清允, 陈志华, 王小盾.基于神经网络的矩形钢管高强混凝土计算方法[J].石家庄铁道大学学报(自然科学版), 2018, 31(1):11-15.
|
[16] |
WANG H J, ZHU H B, WEI H.Bearing capacity of concrete filled square steel tubular columns based on neural network[J].Advanced Materials Research, 2012, 502:193-197.
|
[17] |
TRAN V L, THAI D K, NGUYEN D D.Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete[J].Thin-Walled Structures, 2020, 151.DOI: 10.1016/j.tws.2020.106720.
|
[18] |
DU Y S, CHEN Z H, ZHANG C Q, et al.Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks[J].Frontiers of Computer Science, 2017, 5 (11):863-873.
|
[19] |
王宣鼎.钢管约束型钢混凝土短柱轴压及偏压力学性能研究[D].哈尔滨:哈尔滨工业大学, 2013.
|
[20] |
闫标.钢管约束型钢混凝土中长柱静力性能及设计方法研究[D].兰州:兰州大学, 2013.
|
[21] |
刘连鹏.圆钢管约束型钢超高强混凝土短柱轴压受力性能研究[D].大连:大连理工大学, 2015.
|
[22] |
王昕培.圆钢管约束型钢高强混凝土短柱受压力学性能研究[D].大连:大连理工大学, 2018.
|
[23] |
飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:北京电子工业出版社, 2005.
|
[24] |
TRASK A, HILL F, REED S, et al.Neural arithmetic logic units[C]//The Thirty-Second Annual Conference on Neural Information Processing Systems.Saarland:DBLP, 2018:8046-8055.
|
[25] |
邓庆明.基于因素影响的水土流失程度敏感性研究[J].黑龙江水利科技, 2019, 47(11):157-160.
|
[26] |
JULIAN D O, MICHAEL K J, RUSSELL G D.An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data[J].Ecological Modelling, 2004, 178(3/4):389-397.
|
[27] |
GARSON G D.Interpreting neural-network connection weights[J].AI Expert, 1991, 6(4):46-51.
|