Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Feng Zhiyan, Han Xingzhao, Zheng Xiang. STATISTIC ANALYSIS OF EFFECT FOR LOW-MIDDLE ENERGY DYNAMIC COMPACTION IN ELIMINATING COLLAPSIBILITY OF LOESS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(2): 53-56. doi: 10.13204/j.gyjz201102014
Citation: YU Wen-zheng, SUN Bo-feng, YING Wei, DONG Ting-shun. Research on Seismic Isolation and Seismic Reduction of High-Rise Buildings Bases in High Intensity Area[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 94-100,107. doi: 10.13204/j.gyjzg21052302

Research on Seismic Isolation and Seismic Reduction of High-Rise Buildings Bases in High Intensity Area

doi: 10.13204/j.gyjzg21052302
  • Received Date: 2021-05-23
    Available Online: 2023-02-06
  • The seismic isolation effect of different isolation schemes for high-rise buildings in high-intensity area were compared and analyzed, including single lead rubber bearing isolation, single natural rubber bearing isolation, lead rubber and natural rubber bearing mixed isolation, and the above schemes were combined with viscous dampers. Based on the optimal damping indexes and damping coefficients obtained from the analysis, the influence of reducing natural vibration period of non-isolated structure on the seismic isolation effect was analyzed by using the mixed damping scheme of viscous damper and natural rubber bearing. The analysis showed that adding viscous damper in the isolation layer could significantly improve the seismic isolation effect, reduce the horizontal damping coefficient, and reduce the tensile stress and displacement of the bearing. For high-rise isolated buildings with flexible superstructures, it might be difficult to achieve the expected damping target only by adjusting the layout or parameters of rubber bearings and viscous dampers. The more effective method should be improving the stiffness of superstructure and reducing the natural vibration period of superstructure. Increasing damper output could not necessarily reduce horizontal damping coefficient and bearing tensile stress. The damping coefficient and damping index had an optimal value for the influence of horizontal damping coefficient and bearing tensile stress.
  • [1]
    张雷, 梁伟桥, 王罡, 等.核反应堆厂房基底隔震设计与地震响应分析[J].工业建筑, 2019, 49(7):70-76.
    [2]
    葛根旺, 王军伟, 晋宇.高层隔震结构的应用现状与研究进展[J].工程抗震与加固改造, 2020, 42(6):53-62

    , 69.
    [3]
    丁洁民, 吴宏磊, 王世玉, 等.减隔震技术的发展与应用[J].建筑结构, 2021, 51(17):25-33.
    [4]
    高杰, 薛彦涛.并联变刚度隔震支座试验研究[J].工业建筑, 2018, 48(6):16-20.
    [5]
    林树潮, 周一君.长周期地震动作用下LNG储罐外罐的动力性能研究[J].特种结构, 2021, 38(2):34-41.
    [6]
    张亚飞, 李利平, 刘德稳, 等.长周期地震动下框架-剪力墙结构隔减震改造[J].湖南科技大学学报(自然科学版), 2021, 36(2):13-20.
    [7]
    HEATON T N, HALL J F, WALD D J, et al.Response of high-rise and base-isolated buildings to ahypothetical Mw 7.0 blind thrust earthquake[J].Science, 1995, 267(5195):206-211.
    [8]
    宋晓, 谭平, 周福霖, 等.层间隔震结构参数分析与减震性能研究[J].地震工程与工程振动, 2018, 38(5):41-49.
    [9]
    刘文光, 何文福, 霍达, 等.隔震结构设计加速度反应谱的取值研究[J].振动与冲击, 2010, 29(4):181-187

    , 239.
    [10]
    汤康生, 吴燕, 盛涛, 等.基于新型支座的地铁上盖高层建筑基础隔振模型试验研究[J].工业建筑, 2021, 51(5):76-81

    , 163.
    [11]
    杨海旭, 朱峰, 王海飙, 等.多级变频复合摩擦摆-隔震支座的力学性能和隔震效果研究[J].工业建筑, 2020, 50(6):71-78

    , 110.
    [12]
    苏涛, 梁嘉健, 施谊.组合隔震技术在9度区某高层住宅项目的应用与分析[J].建筑结构, 2021, 51(增刊1):950-954.
    [13]
    李洪求, 薛彦涛, 郗可, 等.某高烈度区高层剪力墙住宅隔震设计[J].建筑结构, 2019, 49(16):1-5.
    [14]
    陈瑞生, 吴进标, 刘彦辉, 等.黏滞阻尼器-基础隔震混合体系优化研究[J].振动与冲击, 2020, 39(11):93-100.
    [15]
    叶昆, 舒率.基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究[J].动力学与控制学报, 2020, 18(5):57-62.
    [16]
    中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社, 2016.
  • Relative Articles

    [1]CHEN Zhihua, LI Wenjie, LIU Hongbo, GAO Xiujian, JING Sinan, LIU Wenrui. Research on Flexural Performance of Variable-Section Inverted Trapezoidal Steel Beams in Shenzhen Dayun Transportation Hub[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 88-94. doi: 10.13204/j.gyjzG23072910
    [2]SHU Ganping, LUO Kerong, WANG Zhangxuan, ZHU Jiao, YU Liang, MO Ze, NING Shuaipeng. Research on Cast Steel Joints Used in a 385-Meter Super Long-Span Transmission Tower Crossing the Yangtze River[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 34-40,47. doi: 10.13204/j.gyjzG22030222
    [3]QIAO Haiyang, LAN Tao, DING Min, ZHUANG Jinzhao, YAO Yaming, MAO Jiawen. STUDY ON ULTIMATE BEARING CAPACITY OF T-SHAPED JOINTS CONNECTED WITH CLAMPS IN STEEL GREENHOUSES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 115-120. doi: 10.13204/j.gyjzG20051508
    [8]Li Shen, Su Mingzhou, Li Feng. THE ELASTIC LATERAL STIFFNESS AND ULTIMATE CAPACITY OF V-ECCENTRIC BRACED STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 145-152. doi: 10.13204/j.gyjz201508027
    [10]Xue Jianyang, Wang Yuncheng, Ma Hui, Liu Jinlu, Ao Xiang. EXPERIMENTAL STUDY ON LATERAL BEARING CAPACITY AND AXIAL COMPRESSION RATIO LIMIT VALUES OF STEEL REINFORCED RECYCLED AGGREGATE CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 30-34,45. doi: 10.13204/j.gyjz201309005
    [11]Guo Yanlin, Jiang Leixin, Zhang Enuo. RESEARCH ON IN-PLANE STABILITY BEARING CAPACITY OF LIPPED H-SECTION TAPERED MEMBERS UNDER COMPRESSION AND BENDING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 32-35. doi: 10.13204/j.gyjz200909006
    [12]Wang Qian, Diao Bo, Li Shuchun, Luo Youxin, Zhang Shaoxing. EXPERIMENT AND BEARING CAPACITY ANALYSIS OF R.C.L SHAPED COLUMN UNDER DIFFERENT DIRECTIONAL CYCLIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 53-58. doi: 10.13204/j.gyjz200809017
    [13]Guo Yanlin, Deng Ke, Lin Bing. STABILITY BEHAVIOR AND DESIGN OF LONGITUDINAL SHUTTLE-SHAPED COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 92-95. doi: 10.13204/j.gyjz200707027
    [14]Yang Na, Long Lihua, Yang Qingshan. THE INTERACTIVE-BUCKLING ANALYSIS OF TAPERED H-SECTION STEEL BEAMS WITH THIN WEB[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 96-100. doi: 10.13204/j.gyjz200701024
    [15]Pan Jinglong, Hu Zhongjun, Xu Tian. STABLE BEARING CAPACITY EXPERIMENTAI STUDY OF THE AXIAL-COMPRESSION REINFORCED CONCRETE SLENDER COLUMNS CONFINED BY FIBER REINFORCED PLASTIC[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 24-28. doi: 10.13204/j.gyjz200509007
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.6 %FULLTEXT: 14.6 %META: 85.4 %META: 85.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.8 %其他: 14.8 %东京: 1.2 %东京: 1.2 %北京: 4.9 %北京: 4.9 %十堰: 4.9 %十堰: 4.9 %南京: 1.2 %南京: 1.2 %南通: 1.2 %南通: 1.2 %厦门: 1.2 %厦门: 1.2 %嘉兴: 2.5 %嘉兴: 2.5 %天津: 7.4 %天津: 7.4 %宣城: 2.5 %宣城: 2.5 %广州: 1.2 %广州: 1.2 %张家口: 7.4 %张家口: 7.4 %扬州: 1.2 %扬州: 1.2 %杭州: 4.9 %杭州: 4.9 %泰州: 1.2 %泰州: 1.2 %温州: 2.5 %温州: 2.5 %漯河: 4.9 %漯河: 4.9 %石家庄: 2.5 %石家庄: 2.5 %芒廷维尤: 22.2 %芒廷维尤: 22.2 %芝加哥: 2.5 %芝加哥: 2.5 %西宁: 1.2 %西宁: 1.2 %西雅图: 1.2 %西雅图: 1.2 %重庆: 3.7 %重庆: 3.7 %长沙: 1.2 %长沙: 1.2 %其他东京北京十堰南京南通厦门嘉兴天津宣城广州张家口扬州杭州泰州温州漯河石家庄芒廷维尤芝加哥西宁西雅图重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (193) PDF downloads(1) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return