Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAI Bin, LIU Yong, SHANG Wennian, ZHANG Jiliang, JIAO Jinfeng. EXPERIMENTAL RESEARCH ON CONSTANT-AMPLITUDE FATIGUE CHARACTERISTICS OF 8.8 GRADE M24 HIGH-STRENGTH BOLTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 122-127. doi: 10.13204/j.gyjzGYJZ201908080006
Citation: ZHAI Bin, LIU Yong, SHANG Wennian, ZHANG Jiliang, JIAO Jinfeng. EXPERIMENTAL RESEARCH ON CONSTANT-AMPLITUDE FATIGUE CHARACTERISTICS OF 8.8 GRADE M24 HIGH-STRENGTH BOLTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 122-127. doi: 10.13204/j.gyjzGYJZ201908080006

EXPERIMENTAL RESEARCH ON CONSTANT-AMPLITUDE FATIGUE CHARACTERISTICS OF 8.8 GRADE M24 HIGH-STRENGTH BOLTS

doi: 10.13204/j.gyjzGYJZ201908080006
  • Received Date: 2020-04-20
  • Publish Date: 2020-11-23
  • In order to study the constant-amplitude fatigue performance of 8.8 grade high-strength bolts under axial tension-tension condition, 3 static tensile tests and 15 M24 bolts with 35K material were carried out. S-N curves were fitted and the fatigue fracture surfaces of representative specimens were analyzed macroscopically and microscopically. In addition, all the test results were compared with those calculated based on the relevant formula of Standard for Classification of Steel Structures (GB 50017—2017). The conclusions are as follows: The fatigue test data were generally discrete, but all within 95% confidence interval; The S-N curves could basically reflect the fatigue life of specimens under different stress amplitudes; At the root of the screw thread, the stress concentration was especially serious, punctiform fatigue source was easy to expand to form linear fatigue source, the notch effect of the specimen was evident; Comparing the test results with the recommended values of allowable fatigue strength stipulated in the national standards, the corresponding fatigue strength of 2×106 times was 1.61 times of the recommended value.
  • WANG Z, ZHANG N, WANG Q. Tensile Behaviour of Open-Hole and Bolted Steel Plates Reinforced by CFRP Strips[J]. Composites Part B:Engineering, 2016, 100:101-113.
    WANG Z, LI L, LIU Y, et al. Fatigue Property of Open-Hole Steel Plates Influenced by Bolted Clamp-up and Hole Fabrication Methods[J]. Materials, 2016, 9(8):698.
    刘胜祥, 宋晓萍, 曾毅, 等. 随机载荷作用下的风力机高强度螺栓疲劳特性分析[J]. 太阳能学报, 2013, 34(2):201-206.
    穆国煜. 避雷针结构法兰盘高强螺栓风致疲劳研究[D]. 郑州:郑州大学, 2018.
    何玉林, 吴德俊, 侯海波, 等. 42CrMo风机塔筒法兰高强度螺栓疲劳寿命分析[J]. 热加工工艺, 2012, 41(4):1-4.
    徐亚洲, 孙震, 张玉清. 摩擦型高强螺栓节点微动疲劳性能试验及有限元分析[J]. 工业建筑, 2017,47(3):175-181.
    赵强, 曹佳丽, 丁景焕, 等. 35CrMo钢螺栓断裂原因分析[J]. 上海金属, 2017, 39(6):71-75.
    杨国法, 余瑾, 裴义林, 等. 风机基座螺栓断裂失效分析[J]. 热加工工艺, 2017, 46(2):257-258

    ,262.
    雷宏刚, 李宇, 焦晋峰. 螺栓球节点网架中M20高强螺栓的疲劳断口分析[C]//中国钢结构协会. 结构稳定与疲劳分会2014年学术交流论文集. 北京:2004:363-370.
    杨旭, 王亚兵, 雷宏刚. 不同应力幅下高强螺栓的疲劳破坏特征研究[J]. 太原理工大学学报, 2016, 47(2):239-243.
    BSI. Eurocode 3:Design of Steel Structures.Part 1-9:Fatigue[S]. London:British Standards Institution,2006.
    全国紧固件标准化技术委员会. 紧固件机械性能螺栓、螺钉和螺柱:GB/T 3098.1-2010[S].北京:中国标准出版社,2010.
    丁北斗,李雁,王宁,等.T型连接接头疲劳性能试验研究[J].工业建筑,2018,48(11):175-181.
    郭宏超,郝李鹏,李炎隆,等.Q460D高强钢及其焊缝连接疲劳性能试验研究[J].建筑结构学报,2018,39(8):157-164.
  • Relative Articles

    [1]CAO Baoya, YANG Bingyi, LI Aiqun, DENG Yang, DING Youliang. Wind-Induced Fatigue Study of Bolted Flange Joints of Self-Standing Steel Chimneys[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 75-85. doi: 10.3724/j.gyjzG24071501
    [2]LI Guochang, LI Zhuangzhuang, LI Xiao. Research on Shear Performance of A New Type of Joints Between Composite Floors and Steel Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 85-94. doi: 10.13204/j.gyjzG23022602
    [3]LI Yuhuan, CHANG Haosong, FU Yanqing, REN Zhikuan, CHANG Hailin. Research on S-N Curves of 930 MPa Large-Diameter High-Strength Cold-Rolled Threaded Prestressed Steel Rebars[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 115-122. doi: 10.3724/j.gyjzG23111502
    [4]TIAN Xin, ZHANG Sumei, CHEN Zhenming, TAO Yu, ZHANG Bing. Finite Element Analysis of Bending Performance of End-Plate Beam Splices with Filler Plates[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 78-87. doi: 10.13204/j.gyjzG23051702
    [5]ZHONG Chuheng, LONG Yuhua, ZHOU Jinzhi, WU Weixi. Research on Fatigue Reliability and Fatigue Life Prediction of Recycled Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 140-145,83. doi: 10.13204/j.gyjzG21080909
    [6]YU Genshe, DENG Zongcai, HUANG Song, WANG Jue. Experimental and Theoretical Study on Stress-Strain Fatigue Properties of High-Strength Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 200-207. doi: 10.13204/j.gyjzG21062304
    [10]Shi Gang, Zhang Jianxing. FATIGUE TEST OF HIGH STRENGTH STEEL Q460D[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 6-10. doi: 10.13204/j.gyjz201403004
    [11]Ji Bohai, Tian Yuan, Fu Zhongqiu, Xu Hanjiang. ANALYSIS OF FATIGUE STRESS AMPLITUDE OF DIAPHRAGM NOTCH IN ORTHOTROPIC STEEL BRIDGE DECK[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 128-131.
    [12]Bu Xiangyi, Ding Hongyan, Zhang Guicheng. 振动; 高强螺栓; 加固[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 154-156. doi: 10.13204/j.gyjz2001412026
    [13]Chen Xujun, Li Huafeng, Yang Yongxin. EXPERIMENTAL STUDY ON FLEXURAL FATIGUE PERFORMANCE OF RC BEAMS STRENGTHENED WITH HYBRID FIBER SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 77-82. doi: 10.13204/j.gyjz201206017
    [14]Wang Yan, Zheng Jie. STUDY ON THE PRYING FORCE OF HIGH STRENGTH BOLT IN EXTENDED END-PLATE CONNECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 99-103. doi: 10.13204/j.gyjz200809028
    [15]Qin Likun, Song Yupu, Zhao Dongfu, Yang Jianhui. MEASURED VARIABLE-AMPLITICED FATIGUE DATA AND VIBRATION MODAL ANALYSIS OF CRANE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 65-66,82. doi: 10.13204/j.gyjz200405020
    [16]Li Qicai, Su Mingzhou, Chen Aiguo, Gu Qiang. EXPERIMENTAL ANALYSIS OF STEEL BEAM-TO-COLUMN CONNECTION WITH CANTILEVER BEAM SPLICING[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 74-76. doi: 10.13204/j.gyjz200406024
  • Cited by

    Periodical cited type(2)

    1. 樊丽轩,王金龙,薛少飞,陈鹏程,焦晋峰. 疲劳荷载特性对8.8级M24高强度螺栓疲劳裂纹扩展机理影响探析. 建筑钢结构进展. 2023(04): 79-87 .
    2. 赵煜,李家春,张萍,钟昊天. 高速列车A286螺栓螺纹滚压工艺多目标优化. 机电工程. 2023(04): 502-508+515 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.3 %FULLTEXT: 5.3 %META: 94.7 %META: 94.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %China: 1.1 %China: 1.1 %上海: 7.0 %上海: 7.0 %东莞: 4.3 %东莞: 4.3 %兰州: 3.2 %兰州: 3.2 %北京: 7.5 %北京: 7.5 %十堰: 0.5 %十堰: 0.5 %南京: 2.7 %南京: 2.7 %南宁: 0.5 %南宁: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 3.2 %天津: 3.2 %太原: 1.1 %太原: 1.1 %宣城: 0.5 %宣城: 0.5 %常德: 0.5 %常德: 0.5 %广州: 2.1 %广州: 2.1 %延安: 0.5 %延安: 0.5 %张家口: 5.9 %张家口: 5.9 %徐州: 0.5 %徐州: 0.5 %成都: 0.5 %成都: 0.5 %扬州: 1.6 %扬州: 1.6 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.1 %杭州: 1.1 %桂林: 0.5 %桂林: 0.5 %武汉: 1.6 %武汉: 1.6 %江门: 1.1 %江门: 1.1 %沈阳: 1.6 %沈阳: 1.6 %济南: 0.5 %济南: 0.5 %温州: 1.6 %温州: 1.6 %漯河: 4.3 %漯河: 4.3 %石家庄: 1.6 %石家庄: 1.6 %福州: 1.1 %福州: 1.1 %芒廷维尤: 5.3 %芒廷维尤: 5.3 %苏州: 2.7 %苏州: 2.7 %西宁: 1.6 %西宁: 1.6 %西安: 2.1 %西安: 2.1 %贵阳: 0.5 %贵阳: 0.5 %运城: 5.9 %运城: 5.9 %邯郸: 1.1 %邯郸: 1.1 %郑州: 3.2 %郑州: 3.2 %重庆: 1.1 %重庆: 1.1 %镇江: 0.5 %镇江: 0.5 %长沙: 1.1 %长沙: 1.1 %阳泉: 0.5 %阳泉: 0.5 %香港: 0.5 %香港: 0.5 %其他China上海东莞兰州北京十堰南京南宁嘉兴天津太原宣城常德广州延安张家口徐州成都扬州晋城朝阳杭州桂林武汉江门沈阳济南温州漯河石家庄福州芒廷维尤苏州西宁西安贵阳运城邯郸郑州重庆镇江长沙阳泉香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(1) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return