Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
LU Li, HE Mingli, LI Haiyan, CHEN Wei, LI Huawei, XIONG Zhe, FENG Pandeng, LIU Feng. Research on Fracture Properties of Rubber Concrete Containing Steel Fibers and Glass Fibers[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 216-221. doi: 10.13204/j.gyjzG23092609
Citation: LU Li, HE Mingli, LI Haiyan, CHEN Wei, LI Huawei, XIONG Zhe, FENG Pandeng, LIU Feng. Research on Fracture Properties of Rubber Concrete Containing Steel Fibers and Glass Fibers[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 216-221. doi: 10.13204/j.gyjzG23092609

Research on Fracture Properties of Rubber Concrete Containing Steel Fibers and Glass Fibers

doi: 10.13204/j.gyjzG23092609
  • Received Date: 2023-09-26
    Available Online: 2024-02-28
  • In order to enhance the fracture properties of rubber concrete, a three-point bending fracture test was conducted to study the impact of steel fiber-glass fibers on the fracture properties of rubber concrete and its strengthening mechanism. The findings indicated that the addition of rubber powder to concrete might reduce its flexural performance, but it had a positive effect on enhancing the toughness and deformation resistance of concrete. The hybrid fiber composed of steel fibers and glass fibers had a substantial positive impact on the fracture properties of rubber concrete. When the total amount of hybrid fibers was 8% and the ratio of steel fiber to glass fiber was 3:1, the flexural strength of the rubber concrete containing hybrid fibers reached 7.87 MPa, with a fracture energy of 4 681.60 J/m2. Based on the analysis of the double-K fracture model, it was evident that the hybrid fibers greatly enhanced the fracture toughness of rubber concrete, with the most significant improvement observed when the total amount of hybrid fibers exceeded 6%. Additionally, the multi-scale synergy of hybrid fibers enhanced the stress-strain performance of rubber concrete, resulting in improved load resistance and toughness.
  • loading
  • [1]
    徐颖, 刘家兴, 杨荣周,等. 超高强度橡胶混凝土的力学特性及能量演化[J]. 建筑材料学报, 2023, 26(6):612-622.
    [2]
    YU Y, JIN Z Q, SHEN D X, et al. Microstructure evolution and impact resistance of crumb rubber concrete after elevated temperatures [J/OL]. Construction and Building Materials, 2023, 384[2023-04-21] https://doi.org/10.1016/j.conbuildmat.2023.131340.
    [3]
    孔慧, 耿欧, 朱思远. 改性废轮胎橡胶混凝土微观结构及其力学性能[J]. 混凝土, 2022(11):152-155,159.
    [4]
    薛刚, 董亚杰, 衣笑,等. 橡胶粒径及掺量对混凝土断裂韧性的影响[J]. 混凝土, 2022(2):99-101,106.
    [5]
    YANG G X, FAN Y J, LI X, et al. Influence of rubber powder size and volume fraction on dynamic compressive properties of rubberized mortar [J/OL]. Powder Technology, 2023, 420[2023-02-24] https://doi.org/10.1016/j.powtec.2023.118376.
    [6]
    杨鹏辉, 姚远. 地聚物橡胶混凝土的力学、抗冲击性能及强度机理分析[J]. 硅酸盐通报, 2023, 42(1):239-247.
    [7]
    张海波. 湿热环境下橡胶混凝土力学性能研究[D]. 广州:广东工业大学, 2015.
    [8]
    衣笑. 基于楔入劈拉法的橡胶混凝土抗裂性能研究[D]. 包头:内蒙古科技大学, 2020.
    [9]
    WANG H L, WU Y H, CHENG B Q. Mechanical properties of alkali-activated concrete containing crumb rubber particles [J/OL]. Case Studies in Construction Materials, 2022, 16[2021-11-24]. https://doi.org/10.1016/j.cscm.2021.e00803.
    [10]
    KAZMI S M S, MUNIR M J, WU Y F, et al. Effect of macro-synthetic fibers on the fracture energy and mechanical behavior of recycled aggregate concrete [J]. Construction and Building Materials, 2018, 189:857-868.
    [11]
    NOAMAN A T, BAKAR B A, AKIL H M, et al. Experimental investigation on compression toughness of rubberized steel fibre concrete [J]. Construction and Building Materials, 2016, 115:163-170.
    [12]
    薛刚, 孙立所, 侯玮华,等. 橡胶混凝土抗折强度及细观破坏机理研究[J]. 混凝土, 2021(7):43-47.
    [13]
    丁亚红, 邹成路, 郭猛,等. 钢纤维增强大掺量再生骨料混凝土力学与断裂性能[J]. 硅酸盐通报, 2023, 42(7):2532-2540.
    [14]
    XU S L, REINHARDT H W. Determination of double-determination of double-K criterion for crack propagation in quasi-brittle fracture part I:experimental investigation of crack propagation [J]. International Journal of Fracture, 1999, 98(2):111-149.
    [15]
    LIU M Y, LU J, MING P, et al. Study of fracture properties and post-peak softening process of rubber concrete based on acoustic emission [J/OL]. Construction and Building Materials, 2021, 313[2021-11-12]. https://doi.org/10.1016/j.conbuildmat.2021.125487.
    [16]
    ALGUHI H, TOMLINSON D. Crack behaviour and flexural response of steel and chopped glass fibre-reinforced concrete:experimental and analytical study [J/OL]. Journal of Building Engineering, 2023,75[2023-05-25]. https://doi.org/10.1016/j.jobe.2023.106914.
    [17]
    MOAWAD M S, EL-HANAFY A M. Investigation of the effect of using geogrid, short glass, and steel fiber on the flexural failure of concrete beams [J]. Alexandria Engineering Journal, 2023, 68:479-489.
    [18]
    陈茜, 伍勇华. 纤维增强型水泥基复合材料的理论发展及应用分析[J]. 混凝土与水泥制品, 2011(11):39-43.
    [19]
    陈猛, 王瑜婷, 陶云霄,等. 基于分形理论研究RTSF混凝土冲击压缩性能[J]. 东北大学学报(自然科学版), 2022, 43(2):266-273.
    [20]
    王圣怡, 占羿箭, 朱然. 钢纤维与有机合成纤维超高性能混凝土的性能对比[J]. 建筑施工, 2020, 42(10):1913-1916.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return