Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Xiaowan, XU Yidong, DAI Di, CAO Tianci, LI Yifan, PENG Jie. EXPERIMENTAL STUDY ON PAVEMENT PERFORMANCES OF CEMENT-STABILIZED SOIL REINFORCED WITH SUPER ABSORBENT POLYMERS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 154-158. doi: 10.13204/j.gyjzG20110202
Citation: FAN Jiansheng, DING Ran, SUN Yunlun. Research on the Application of Steel-Plate Concrete Structures in Nuclear Plant Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 18-28. doi: 10.13204/j.gyjzG23090107

Research on the Application of Steel-Plate Concrete Structures in Nuclear Plant Engineering

doi: 10.13204/j.gyjzG23090107
  • Received Date: 2023-09-01
    Available Online: 2023-11-08
  • Steel-plate concrete structure has excellent performance, and has been more and more widely used in buildings, bridges, tunnels and other projects. When applied to nuclear power plants, steel-plate concrete structure shows strong particularity in terms of the stress characteristics, functional requirements and construction. In recent years, a large number of application studies of steel-plate concrete structure in nuclear power plant engineering have been carried out at home and abroad, forming a relatively complete specification system. In the paper, the application and research of steel-plate concrete structure in nuclear power plant engineering were reviewed, including relevant structural design specifications, typical structural forms, mechanical properties and design methods of basic components and units, structural properties and design methods under special working conditions (accident conditions, large aircraft impact, etc.). Finally, according to the special functional requirements of nuclear power plants and the requirements of fine design and construction, the problems that need to be further studied were put forward, including the complex static performance test of various types of steel-plate concrete elements; the mechanical properties and design conditions of steel-plate concrete structure under special working conditions; reasonable and simple structural details, some key construction techniques such as module machining precision, concrete casting temperature and module deformation control, as well as concrete casting compactness and quality control.
  • [1]
    樊健生, 丁然, 聂鑫, 等. 高性能双钢板混凝土结构研究与应用[J]. 建筑结构学报, 2022, 43(9):55-72.
    [2]
    潘蓉,吴婧姝,张心斌. 钢板混凝土结构在核电工程中应用的发展状况[J].工业建筑, 2014,44(12):1-7

    ,67.
    [3]
    樊健生,朱尧于,崔冰,等.钢板-混凝土组合结构桥塔研究及应用综述[J].土木工程学报,2023,56(4):61-71.
    [4]
    宋神友,聂建国,徐国平,等.双钢板-混凝土组合结构在沉管隧道中的发展与应用[J].土木工程学报,2019,52(4):109-120.
    [5]
    柏崎·刈羽核电站的固体废物焚烧炉厂房[EB/OL].[2023-09-01]. https://www.tepco.co.jp/cc/press/02072501-j.html.
    [6]
    Westinghouse Electric Company. Westinghouse AP1000 Design Control Document Rev. 17[EB/OL].[2023-09-01]. https://www.nrc.gov/docs/ML0832/ML083230868.html.
    [7]
    Mitsubishi Heavy Industries. Design Control Document for the US-APWR[EB/OL].[2023-09-01]. http://pbadupws.nrc.gov/docs/ML1109/ML110980211.pdf.
    [8]
    邢继,徐国飞,王晓江."华龙一号"首堆核岛布置设计[J].核科学与工程,2022,42(3):539-548.
    [9]
    沈斌,王友刚,张然, 等.60万kW高温气冷堆核电厂钢板混凝土剪力墙竖向荷载作用下单面耐火性能试验研究[J].工业建筑,2021,51(12):56-63.
    [10]
    American Institute of Steel Construction. Specification for Safety-Related Steel Structures for Nuclear Facilities:ANSI/AISC N690-2018[S]. Chicago:AISC, 2018.
    [11]
    日本电力协会核能标准委员会. 钢板混凝土结构抗震设计技术规程:JEAC4618-2009[S]. 日本电力协会核能标准委员会, 2009.
    [12]
    中华人民共和国住房和城乡建设部. 核电站钢板混凝土结构技术标准:GB/T 51340-2018[S]. 北京:中国计划出版社, 2018.
    [13]
    中华人民共和国住房和城乡建设部. 组合结构设计规范:JGJ 138-2016[S]. 北京:中国建筑工业出版社, 2016.
    [14]
    中华人民共和国交通运输部. 公路钢结构桥梁设计规范:JTG D64-2015[S]. 北京:人民交通出版社, 2015.
    [15]
    邱盛源,樊健生,聂建国,等. 角钢连接件抗剪刚度试验及理论研究[J]. 中国公路学报, 2021, 34(3):136-146.
    [16]
    唐亮,樊健生,聂建国, 等. 角钢连接件力学性能及混凝土脱空对其影响研究. 工程力学, 2020, 37(10):45-55.
    [17]
    TANG R Y, NIE X, DING R, et al. Tensile behaviour of transverse reinforcement with different connection methods in single steel-plate concrete composite structures[J]. Structures, 2023, 51:936-949.
    [18]
    WANG B X, DING R, FAN J S, et al. Shear performance of single steel-plate concrete composite beams with various transverse reinforcement configurations[J/OL]. Engineering Structures, 2022, 270[2023-09-01].https://doi.org/10.1016/j.engstruct.2022.114676.
    [19]
    YANG Y, WU B, XU LY, et al. Experimental study on the buckling behavior of double steel plate concrete composite slabs with stiffening ribs and tie plates[J/OL]. Engineering Structures, 2022, 255[2023-09-01].https://doi.org/10.1016/j.engstruct.2022.113895.
    [20]
    SEO J, VARMA A H. Steel-plate composite wall-to-wall T-joints:joint shear strength[J/OL]. Journal of Structural Engineering, 2019, 145(7)[2023-09-01].https://doi.org/10.1061/(ASCE)ST.1943-541X.0002317.
    [21]
    SEO J, VARMA A H. Behavior and design of steel-plate composite wall-to-wall corner or L-joints[J]. Nuclear Engineering and Design, 2017, 323:317-328.
    [22]
    高啓恩. 基于UHPC的RC楼板-SC剪力墙节点抗震性能研究[D]. 北京:清华大学, 2023.
    [23]
    KONG S Y, FAN J S, NIE X, et al. Pullout behavior of lap splice connections between double-steel-plate composite walls and RC raft foundation in nuclear engineering[J/OL]. Engineering Structures, 2021, 230[2023-09-01].https://doi.org/10.1016/j.engstruct.2020.111720.
    [24]
    OZAKI M, AKITA S, OSUGA H, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nuclear Engineering & Design, 2004, 228(1/2/3):225-244.
    [25]
    高爱平,于跃,沈亮,等. 某核岛厂房钢板混凝土曲面墙滞回性能试验[J]. 建筑结构,2022,52(增刊1):1323-1328.
    [26]
    于跃,沈亮,高爱平,等. 某核岛厂房转运清洗间曲面墙单向轴压试验[J]. 建筑结构,2022,52(增刊1):1313-1317.
    [27]
    WANG N, ZHOU F, QU Y G, et al. Flexural behavior of curved steel-plate composite (SC) walls under combined axial compression and cyclic lateral force[J/OL]. Engineering Structures, 2021, 245[2023-09-01].https://doi.org/10.1016/j.engstruct.2021.112919.
    [28]
    刘红林. 不锈钢板-混凝土组合梁抗弯性能研究[D].长春:吉林建筑大学,2022.
    [29]
    张有佳,王子彦,李小军, 等. C50赤铁矿混凝土中栓钉的抗剪性能试验及有限元研究[J].应用基础与工程科学学报,2022,30(5):1201-1215.
    [30]
    于跃,马英,高爱平, 等.某核工程钢板混凝土结构插筋在重混凝土中的锚固性能试验[J]. 建筑结构,2022,52(增刊1):1329-1332.
    [31]
    SENER K C, VARMA A H, SEO J. Experimental and numerical investigation of the shear behavior of steel-plate composite (SC) beams without shear reinforcement[J]. Engineering Structures, 2016, 127:495-509.
    [32]
    SENER K C, VARMA A H. Steel-plate composite walls:experimental database and design for out-of-plane shear[J]. Journal of Constructional Steel Research, 2014, 100:197-210.
    [33]
    SENER K C, VARMA A H, AYHAN D. Steel-plate composite (SC) walls:out-of-plane flexural behavior, database, and design[J]. Journal of Constructional Steel Research, 2015, 108:46-59.
    [34]
    YANG Y, LIU J B, NIE X, et al. Experimental research on out-of-plane cyclic behavior of steel-plate composite walls[J]. Journal of Earthquake and Tsunami, 2016, 10(1):1-16.
    [35]
    杨悦, 刘晶波, 樊健生, 等. 钢板-混凝土组合板受弯性能试验研究[J]. 建筑结构学报, 2013, 34(10):24-31.
    [36]
    吴丽丽, 姜宇鹏, 张栋栋, 等. 简支钢板-混凝土组合板受弯性能及承载力分析[J]. 建筑结构学报, 2015, 36(12):125-134.
    [37]
    郭全全, 杨列昂, 周耀, 等. 单钢板混凝土组合板面外承载力计算方法[J]. 工业建筑, 2016, 46(10):33-35.
    [38]
    SEO J, VARMA A H, SENER K, et al. Steel-plate composite (SC) walls:in-plane shear behavior, database, and design[J]. Journal of Constructional Steel Research, 2016, 119:202-215.
    [39]
    WANG J J, NIE X, BU F M, et al. Experimental study and design method of shear-dominated composite plate shear walls[J/OL]. Engineering Structures, 2020, 215[2023-09-01].https://doi.org/10.1016/j.engstruct.2020.110656.
    [40]
    BHARDWAJ S R, VARMA A H, MALUSHTE S R. Minimum requirements and section detailing provisions for steel-plate composite (SC) walls in safety-related nuclear facilities[J]. Engineering Journal, 2017, 2:89-107.
    [41]
    ZHANG K, VARMA A H, MALUSHTE S R, et al. Effect of shear connectors on local buckling and composite action in steel concrete composite walls[J]. Nuclear Engineering and Design, 2014, 269:231-239.
    [42]
    VARMA A H, MALUSHTE S R, SENER K C, et al. Steel-plate composite (SC) walls for safety related nuclear facilities:design for in-plane forces and out-of-plane moments[J]. Nuclear Engineering and Design, 2014, 269:240-249.
    [43]
    黄城均, 宋晓冰. 双钢板混凝土组合结构平面内破坏准则研究[J]. 建筑结构, 2019, 49(4):123-128.
    [44]
    黄城均, 朱天怡, 宋晓冰. 双钢板混凝土单元平面内屈服准则[J]. 上海交通大学学报, 2022, 56(4):422-430.
    [45]
    HUANG C J, CHEN S J, LENG Y B, et al. Experimental research on steel-concrete-steel sandwich panels subjected to biaxial tension compression[J/OL]. Journal of Constructional Steel Research, 2019, 162[2023-09-01].https://doi.org/10.1016/j.jcsr.2019.105725.
    [46]
    LIU R R, DING R, FAN J S, et al. Constitutive laws of softened UHPC in biaxial tension-compression:experimental study using a planar bi-directional element tester[J/OL]. Construction and Building Materials, 2023, 401[2023-09-01].https://doi.org/10.1016/j.conbuildmat.2023.132966.
    [47]
    BOOTH P N, VARMA A H, SENER K C, et al. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading[J]. Nuclear Engineering and Design, 2015, 295:817-828.
    [48]
    HASHIMOTO J, TAKIGUCHI K, NISHIMURA K, et al. Experimental study on behavior of RC panels covered with steel plates subjected to missile impact[C]//Proceedings of 18th International Conference on Structure Mechanics in Reactor Technology. Beijing:2005.
    [49]
    KIM K, SUH Y, MOON I, et al. A study on the local impact behavior of the sc wall using actual test and simulation[J/OL].Engineering,2015[2023-09-01]. https://api.semanticscholar.org/CorpusID:201574496.
    [50]
    MIZUNO J, KOSHIKA N, SAWAMOTO Y, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact part 1:test program and results[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing:2005.
    [51]
    唐若洋. 单钢板-混凝土组合结构抗冲击性能及应用研究[D]. 北京:清华大学, 2023.
    [52]
    RIERA J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426.
    [53]
    LI J, MEI R, WANG Y, et al. Vibration analysis of third generation nuclear power plant considering soil-structure-interaction effect under the impact of large commercial aircraft[J/OL]. The Structural Design of Tall and Special Buildings, 2020, 29(16)[2023-09-01].https://doi.org/10.1002/tal.1796.
    [54]
    韩鹏飞. 核工程双钢板混凝土结构抗大型商用飞机撞击研究[D]. 北京:清华大学, 2018.
  • Relative Articles

    [1]YU Bin, ZHANG Yuanliang, XU Yi, WANG Xin, ZHANG Chuchu, CHENG Dianhu, SHAO Jianni. Mechanical Properties of Chopped Basalt Fiber-Reinforced Cement-Based Composites[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 197-205. doi: 10.3724/j.gyjzG24041501
    [2]DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
    [3]HAN Yudong, DING Xiaoping, HAO Tingyu, GUO Dong, HOU Dongwei. CURRENT STATUS OF RESEARCH ON DURABILITY OF SEAWATER-CORAL AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 186-192,120. doi: 10.13204/j.gyjzG20042507
    [4]ZHAO Xiaowan, LYU Jin, WANG Meihua, HUANG Mufan, XU Pengxu, PENG Jie. COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 15-18,49. doi: 10.13204/j.gyjzG20052521
    [5]Chu Chengfu, Wang Lina, Li Xiaochun, Dong Mansheng. STRENGTH TEST ON THE SOLIDIFICATION FOR DREDGED SILT MIXED WITH IRON TAILINGS BY CEMENT AND CARBIDE SLAGS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 81-86. doi: 10.13204/j.gyjz201505018
    [6]Tan Qian Guo Hongxian Cheng Xiaohui, . EXPERIMENTAL STUDY OF STRENGTH AND DURABILITY OF MICROBIAL CEMENT MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 42-47. doi: 10.13204/j.gyjz201507009
    [7]Hu Weixin, Huang Wei, Qin Honggen. EFFECT OF DIATOMITE,ULTRAFINE RICE HUSK ASH,AND SILICON ASH ON THE PERFORMANCE OF DUAL POROUS CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 113-116. doi: 10.13204/j.gyjz201410023
    [8]Zha Fusheng, Hao Ailing, Zhao Lin, Cui Kerui. EXPERIMENTAL STUDY OF EXPANSIVE SOIL TREATED WITH CARBIDE SLAG[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 69-72.
    [9]Zhou Mei, Zhao Huamin, Lu Qilin, Pu Beichao. THE EFFECTS OF PRETREATMENT OF SPONTANEOUS COMBUSTION GANGUE AGGREGATE ON THE WORKABILITY AND STRENGTH OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 113-117. doi: 10.13204/j.gyjz2001412018
    [10]Zhou Hui. ANALYSIS OF MINERAL COMPOSITION IMPACT ON SOFT SOIL'S STRENGTH PROPERTIES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 61-64. doi: 10.13204/j.gyjz201307014
    [11]Zha Fusheng, Liu Jingjing, Cui Kerui, Xu Long. ENGINEERING PROPERTIES OF SOLIDIFIED AND STABILIZED HEAVY METAL CONTAMINATED SOILS WITH CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 74-77,110. doi: 10.13204/j.gyjz201211016
    [12]Luo Sihai, Gong Tianjie. INFLUENCE OF CONFINED IMPACT ON DEFORMATION AND STRENGTH BEHAVIOR OF COHESIVE SOILS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 81-85. doi: 10.13204/j.gyjz201103016
    [13]Xiao Weibing, Xu Dexin, Chen Yueqing, Cheng Xiaoyan. DISCUSSION ON REMAINING SERVICE LIFE OF CONCRETE BRIDGE BEFORE AND AFTER STRENGTHENING BASED ON ASSESSMENT OF DURABILITY CLASS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 84-88. doi: 10.13204/j.gyjz200905018
    [14]Wang Lei, Zhao Yanlin. RESEARCH ON THE DURABILITY OF CORRODED RC BEAMS STRENGTHENED WITH CARBON FIBERS IN MARINE CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 120-124. doi: 10.13204/j.gyjz200908029
    [15]Yang Yong-xin, Yue Qing-rui, Guo Chun-hong, Zhao Yan, Cai Peng. EVALUATION METHOD OF DURABILITY OF FRP[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 6-9. doi: 10.13204/j.gyjz200608002
    [16]Huang Xin, Ning Jian-guo, Xu Sheng, Lan Ming-zhang. INFLUENCE OF Ca(OH)2 CONCENTRATION IN THE PORE SOLUTION ON STRENGTH INCREASING OF THE STABILIZED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 19-24. doi: 10.13204/j.gyjz200607004
    [17]Xia Ning, Ren Qingwen, Zhu Zhenghua. THE APPLICATION OF FUZZY CLUSTER ANALYSIS IN THE EVALUATION OF DURABILITY OF COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 72-74. doi: 10.13204/j.gyjz200505019
    [18]Zhang Leishun, Wang Juan, Huang Qiufeng, Deng Yu. EXPERIMENTAL STUDY ON FROST-RESISTANT DURABILITY OF RECYCLED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 64-66,45. doi: 10.13204/j.gyjz200509017
    [19]Liu Ronggui, Lu Chunhua, Lei Liheng, LüZhitao. STUDY ON DURABILITY OF MODERN PRESTRESSED CONCRETE STRUCTURE IN CARBONATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 69-72. doi: 10.13204/j.gyjz200404020
    [20]Niu Chunlei, Zhu Bolong. EXPERIMENT RESEARCH ON IMPROVING COMPRESSIVE STRENGTH OF ECCENTRICALLY LOADED COLUMNS STRENGTHENED BY FIBER REINFORCED PLASTIC[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 95-98. doi: 10.13204/j.gyjz200409028
  • Cited by

    Periodical cited type(6)

    1. 张爽,李敬伟,付晓丽,侯祥山,刘延慧,文传琦,王旭江,王子良,王文龙,谢营,王森. 功能性外加剂对固废基硫铝铁系胶凝材料固化砂土的影响研究. 环境卫生工程. 2025(01): 15-22 .
    2. 金茂祥,黄志坚. 工程废弃泥浆固化土路用性能研究. 地基处理. 2025(01): 83-89 .
    3. 陈俊华,丁云飞,颜宇,奚柏承. 固化剂种类和含量对固化土力学性能的影响研究. 中国石油和化工标准与质量. 2024(02): 140-142 .
    4. 俞翔,曹天赐,白兰兰,商志阳,戴迪,彭劼. 聚丙烯酰胺对水泥固化砂土性能的影响. 河北工程大学学报(自然科学版). 2023(02): 65-70 .
    5. 梅红,马柯,刘瑾,王禄艺,冯玉晗,齐梦瑶,胡梦园. 生态型稳定剂协同植物根系固土特性及机理研究. 水利水电科技进展. 2023(04): 52-58 .
    6. 何佳,孙虎,刘志义. 环氧树脂改性材料在松软路面固化工程中的应用研究. 粘接. 2023(09): 58-61 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.0 %FULLTEXT: 8.0 %META: 89.8 %META: 89.8 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %China: 1.1 %China: 1.1 %上海: 1.1 %上海: 1.1 %东莞: 1.7 %东莞: 1.7 %临沂: 0.6 %临沂: 0.6 %丽水: 1.7 %丽水: 1.7 %北京: 3.4 %北京: 3.4 %南京: 3.4 %南京: 3.4 %厦门: 2.3 %厦门: 2.3 %台州: 2.8 %台州: 2.8 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.6 %呼和浩特: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.6 %天津: 0.6 %安康: 1.1 %安康: 1.1 %宿州: 1.1 %宿州: 1.1 %常德: 0.6 %常德: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 0.6 %成都: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.7 %杭州: 1.7 %武汉: 3.4 %武汉: 3.4 %沈阳: 0.6 %沈阳: 0.6 %济南: 0.6 %济南: 0.6 %深圳: 0.6 %深圳: 0.6 %湖州: 0.6 %湖州: 0.6 %湘潭: 0.6 %湘潭: 0.6 %漯河: 2.3 %漯河: 2.3 %潍坊: 0.6 %潍坊: 0.6 %石家庄: 1.1 %石家庄: 1.1 %福冈县: 1.1 %福冈县: 1.1 %福州: 0.6 %福州: 0.6 %芒廷维尤: 23.9 %芒廷维尤: 23.9 %芝加哥: 2.8 %芝加哥: 2.8 %苏州: 0.6 %苏州: 0.6 %西宁: 8.5 %西宁: 8.5 %西安: 0.6 %西安: 0.6 %贵阳: 0.6 %贵阳: 0.6 %运城: 6.8 %运城: 6.8 %通辽: 1.1 %通辽: 1.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.1 %郑州: 1.1 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.6 %阳泉: 0.6 %雷德蒙德: 0.6 %雷德蒙德: 0.6 %黄石: 0.6 %黄石: 0.6 %其他China上海东莞临沂丽水北京南京厦门台州合肥呼和浩特嘉兴天津安康宿州常德张家口成都晋城朝阳杭州武汉沈阳济南深圳湖州湘潭漯河潍坊石家庄福冈县福州芒廷维尤芝加哥苏州西宁西安贵阳运城通辽邯郸郑州长沙阳泉雷德蒙德黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (322) PDF downloads(25) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return