Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Cao Xiujuan, Liu Kaifu, Xie Xinyu, Liu Yilin. MEASUREMENTS AGAINST SOIL-SQUEEZING DURING PILE-DIVING IN THICK SOFT SOIL AND FIELD MONITORING METHOD[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 55-57. doi: 10.13204/j.gyjz200406018
Citation: YUE Qingrui, SHI Zhongqi, CUI Wenhui, DENG Peng, ZHOU Lin, LU Xinzheng, XU Zhen. Technological System of “Prevention-Assessment-Improvement-Response” for Urban Safety Based on the Theory of “Risk Source-Risk Exposure-Mitigation Factor”[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 1-9. doi: 10.13204/j.gyjzG23082202

Technological System of “Prevention-Assessment-Improvement-Response” for Urban Safety Based on the Theory of “Risk Source-Risk Exposure-Mitigation Factor”

doi: 10.13204/j.gyjzG23082202
  • Received Date: 2023-08-22
    Available Online: 2023-11-08
  • The acceleration of urbanization has brought many challenges to urban safety. How to protect people's lives and property, as well as to ensure the regular operation of the city is an urgent task to be solved. To practically guide the urban safety management, this study proposes a technical system of "prevention-assessment-improvement-response", which is based on the urban safety theory framework of "risk source-risk exposure-mitigation factor", and presents tasks needed to be done in the four stages of this system and its application in Shenzhen. It takes account of all the factors of "risk source-risk exposure-mitigation factor" and provides a new guideline for the urban safety management so as to give systematic solution for urban safety governance.
  • [1]
    新华社. 改革开放以来我国城镇化水平显著提高[EB/OL]. (2018-09-10)[2023-07-28]. https://www.gov.cn/xinwen/2018-09/10/content_5320844.htm.
    [2]
    徐锡伟, 王中根, 许冲, 等. 我国主要城市群自然灾害风险分析与防范对策[J]. 城市与减灾, 2021(6):1-6.
    [3]
    林丹. 乌尔里希·贝克风险社会理论探究[D]. 大连:大连理工大学, 2009.
    [4]
    鲍磊. 现代性反思中的风险:评吉登斯的社会风险理论[J]. 社会科学评论, 2007(2):84-88.
    [5]
    斯科特·拉什, 王武龙. 风险社会与风险文化[J]. 马克思主义与现实, 2002(4):52-63.
    [6]
    范维澄, 刘奕. 城市公共安全体系架构分析[J]. 城市管理与科技, 2009, 11(5):38-41.
    [7]
    袁宏永, 苏国锋, 付明. 城市安全空间构建理论与技术研究[J]. 中国安全科学学报, 2018, 28(1):185-190.
    [8]
    黄弘, 李瑞奇, 于富才, 等. 安全韧性城市构建的若干问题探讨[J]. 武汉理工大学学报(信息与管理工程版), 2020, 42(2):93-97.
    [9]
    岳清瑞, 陆新征, 许镇, 等. 基于"风险源+承灾体+减灾体"的城市安全表征"库-网-流-谱-法"理论框架[J]. 工程力学, 2022, 39(11):52-62.
    [10]
    PEARSON C M, MITROFF I I. From crisis prone to crisis prepared:a framework for crisis management[J]. Academy of Management Perspectives, 1993, 7(1):48-59.
    [11]
    HEATH R L. Crisis management for managers and executives:business crises, the definitive handbook to reduction, readiness, response, and recovery[M]. London:Financial Times Pitman Pub., 1998.
    [12]
    张良. 风险治理视角下城市风险事件预警响应框架构建研究[J]. 华东理工大学学报(社会科学版), 2020, 35(3):112-125.
    [13]
    李理, 卢毅, 房建宏. 公路交通地震应急管理技术体系框架研究[J]. 中外公路, 2013, 33(5):327-331.
    [14]
    易承志. 中国韧性治理体系的框架和构建路径[J]. 人民论坛, 2023(15):66-69.
    [15]
    周忠良, 赵雅欣, 沈迟, 等. 城市重大公共卫生风险全过程防控体系构建[J/OL]. 西安交通大学学报(社会科学版),2023:1-20[2023-09-01].http://kns.cnki.net/kcms/detail/61.1329.C.20230717.1227.002.html.
    [16]
    刘高峰, 朱锦迪, 王慧敏. 城市灾害系统性风险的治理框架及现实路径[J]. 江苏社会科学, 2023(1):142-151.
    [17]
    彭媛漪, 张玲玲. "多主体-全过程"视角下城市洪涝灾害应急管理框架研究[J]. 河南科学, 2022, 40(12):2023-2030.
    [18]
    林宇航, 叶勤, 林怡. 数据驱动模式下特大城市公共基础设施安全的智慧管理与风险预警框架构建:以上海市为例[J]. 北京测绘, 2022, 36(11):1576-1581.
    [19]
    巩宜萱, 史益豪, 刘润泽. 大安全观:超大型城市应急管理的理论构建:来自深圳的应急管理实践[J]. 公共管理学报, 2022, 19(3):46-57

    ,168.
    [20]
    石娟, 郑鹏, 常丁懿. 大数据环境下的城市公共安全治理:区块链技术赋能[J]. 中国安全科学学报, 2021, 31(2):24-32.
    [21]
    石晓冬, 李翔. 国土空间规划背景下的城市安全体系构建[J]. 科技导报, 2021, 39(5):9-16.
    [22]
    袁近远, 孙锐, 袁晓铭. 土木工程地震灾害风险治理技术框架研究[J]. 地震工程与工程振动, 2020, 40(2):145-153.
    [23]
    张陶, 曹惠民, 王锋. 城市公共安全治理中公众参与困境与对策[J]. 城市发展研究, 2019, 26(9):6-9

    ,24.
    [24]
    鲍学俊, 王蕊, 吴金秀. 上海市突发事件预警信息发布现状与思考[J]. 职业卫生与应急救援, 2023, 41(2):206-210.
    [25]
    王光辉, 刘怡君, 王红兵. 基于耗散结构理论的城市风险形成及演化机理研究[J]. 城市发展研究, 2014, 21(11):81-86.
    [26]
    史培军, 杜鹃, 冀萌新, 等. 中国城市主要自然灾害风险评价研究(英文)[J]. 地球科学进展, 2006(2):170-177.
    [27]
    杨国梁, 多英全, 王如君, 等. 事故灾难类城市安全风险评估基本原则与流程[J]. 中国安全科学学报, 2018, 28(10):156-161.
    [28]
    张明媛, 袁永博, 周晶. 城市综合承灾能力评价[J]. 自然灾害学报, 2010, 19(1):90-96.
    [29]
    蔡玫, 王秋寒. Natech风险管理中的承灾体脆弱性评估方法综述[J]. 中国安全科学学报, 2021, 31(11):9-17.
    [30]
    李智超. 超大城市系统性风险的特征与治理策略[J]. 国家治理, 2023(8):61-65.
    [31]
    马晓东. 政府、市场与社会合作视角下的灾害协同治理研究[J]. 经济问题, 2021(1):18-22.
    [32]
    李亚, 翟国方, 顾福妹. 城市基础设施韧性的定量评估方法研究综述[J]. 城市发展研究, 2016, 23(6):113-122.
    [33]
    SHARIFI A. A critical review of selected tools for assessing community resilience[J]. Ecological Indicators, 2016, 69:629-647.
    [34]
    尚勇. 有效防控城市安全发展风险研究[J]. 未来城市设计与运营, 2022(5):7-14.
    [35]
    罗地生. 全面提高救援处置和保障能力[N]. 中国应急管理报, 2023-01-13(001).
    [36]
    缪惠全, 王乃玉, 汪英俊, 等. 基于灾后恢复过程解析的城市韧性评价体系[J]. 自然灾害学报, 2021, 30(1):10-27.
    [37]
    CIMELLARO G P, RENSCHLER C, REINHORN A M, et al. Peoples:a framework for evaluating resilience[J/OL]. Journal of Structural Engineering, 2016, 142(10)[2023-07-28]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001514.
    [38]
    缪惠全, 钟紫蓝, 侯本伟, 等. 中国特色韧性城市的经验探索与未来趋势:从唐山地震到汶川地震[J]. 北京工业大学学报, 2023,49(7):810-832.
  • Relative Articles

    [1]GUO Liang, ZHUFU Gaolin, LIU Xiguang, NIU Ditao, GAO Peng, YANG Teng. Corrosion of Concrete Structures Exposed to Industrial Coal-Fired Flue Gas[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 145-152. doi: 10.3724/j.gyjzG24092302
    [2]QIAO Hongxia, LI Aoyang, LI Jiangchuan, FU Yong, ZHU Feifei. RESEARCH ON DURABILITY OF FIBER REINFORCED CONCRETE BASED ON WIENER DEGRADATION PROCESS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 165-169. doi: 10.13204/j.gyjzG20062808
    [3]HAN Yudong, DING Xiaoping, HAO Tingyu, GUO Dong, HOU Dongwei. CURRENT STATUS OF RESEARCH ON DURABILITY OF SEAWATER-CORAL AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 186-192,120. doi: 10.13204/j.gyjzG20042507
    [4]NING Xiliang, WANG Wanping, HAO Shuai, ZHAO Zishun, ZHANG Fashan. EFFECT OF DIFFERENT FIBERS ON FROST RESISTANCE OF CONCRETE UNDER MULTIPLE FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 122-128. doi: 10.13204/j.gyjzG19110401
    [5]Xu Gang, Wen Ting, Wang Qing, Fei Hongfang, Bao Hao. STUDY OF PROPERTIES OF CHLORIDE IONS TRANSPORTATION IN CONCRETE COVER UNDER THE STRAY CURRENTS ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 73-76. doi: 10.13204/j.gyjz201406017
    [6]Wang Mingfang, Sun Yuyong. EXPERIMENTAL STUDY ON SALIFICATION EROSION RESISTANCE DURABILITY OF HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 127-130. doi: 10.13204/j.gyjz201206027
    [7]Wang Chenfei, Niu Ditao. RESEARCH ON THE DURABILITY OF POLYPROPYLENE FIBER CONCRETE UNDER FREEZE-THAW DAMAGE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 137-139,153. doi: 10.13204/j.gyjz201201026
    [8]Sui Lili, Quan Xinrui, Xing Feng, Zhang Hongyuan. STATE-OF-THE-ART OF RESEARCH ON DURABILITY OF POST-TENSIONED CONCRETE BRIDGES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 105-111. doi: 10.13204/j.gyjz201101025
    [9]Wang Jiandong, Zhang Junzhi, Lu Lie, Zhou Jianmin, Zeng Fanxin, Shen Miaojin. STUDY ON BEARING CAPACITY OF CORROSION OF RC BEAMS UNDER ARTIFICIAL CLIMATE ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 19-22. doi: 10.13204/j.gyjz201105005
    [10]Qiao Hongxia, Zhou Mingru, Zhu Yanpeng, He Zhongmao. DESIGN AND CHOICE OF DURABILITY ASSESSMENT PARAMETER OF CONCRETE IN SALTY SOIL REGION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 27-30,78. doi: 10.13204/j.gyjz201006007
    [11]Hao Tingyu, Wang Fujiang, Wu Zhigang, Wu Huifen. DETERIORATION AND DURABILITY DECREASE OF REINFORCED CONCRETE WORKSHOP STRUCTURES BY DIFFERENT INDUSTRIAL MEDIA[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 36-39,59. doi: 10.13204/j.gyjz201006009
    [12]Wang Lei, Zhao Yanlin. RESEARCH ON THE DURABILITY OF CORRODED RC BEAMS STRENGTHENED WITH CARBON FIBERS IN MARINE CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 120-124. doi: 10.13204/j.gyjz200908029
    [13]Li Shengyong, Zhang Zhe, Gong Jinxin. A NEW DURABILITY DESIGN METHOD FOR CONCRETE STRUCTURES BASED ON EQUIVALENT RESISTANCE RELIABILITY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 77-81. doi: 10.13204/j.gyjz200708020
    [14]Yang Yongxin, Yang Meng, Zhao Yan, Lian Jie. EXPERIMENTAL STUDY ON DURABILITY OF BASALTIC FIBER REINFORCED POLYMER[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 11-13. doi: 10.13204/j.gyjz200706004
    [15]Sun Daosheng, Deng Min, Tang Mingshu. STUDY ON THE DURABILITY OF THE FIBER AND HYBRID FIBER REINFORCED EXPANSIVE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 69-71,47. doi: 10.13204/j.gyjz200504020
    [16]Hong Naifeng. DEVELOPMENT AND USE OF STEEL BAR INHIBITOR[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 68-70,79. doi: 10.13204/j.gyjz200506020
    [17]Zhang Leishun, Wang Juan, Huang Qiufeng, Deng Yu. EXPERIMENTAL STUDY ON FROST-RESISTANT DURABILITY OF RECYCLED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 64-66,45. doi: 10.13204/j.gyjz200509017
    [18]Zhou Xingang, Chu Mingjin, Wu Jianglong, Li Qiang, Sui Zhijun, Gao Zhongqin. DURABILITY OF CONCRETE STRUCTURES EXPOSED TO UNFAVORABLE ATMOSPHERE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 66-68,65. doi: 10.13204/j.gyjz200404019
    [19]Chen Liuguo, Fang Congqi, Kou Xinjian, Chen Bing. BOND PROPERTY OF REINFORCED CONCRETE WITH CORRODED REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 15-17. doi: 10.13204/j.gyjz200405005
    [20]Tu Yongming, LüZhitao. THE EXPERIMENTAL RESEARCH ON PRESTRESSED CONCRETE STRUCTURE UNDER SALT FOG CORROSION ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 1-3,10. doi: 10.13204/j.gyjz200405001
  • Cited by

    Periodical cited type(0)

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401234
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 1.5 %FULLTEXT: 1.5 %META: 92.3 %META: 92.3 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %China: 1.5 %China: 1.5 %上海: 1.5 %上海: 1.5 %东莞: 1.5 %东莞: 1.5 %乌鲁木齐: 1.5 %乌鲁木齐: 1.5 %佛山: 3.1 %佛山: 3.1 %北京: 7.7 %北京: 7.7 %合肥: 1.5 %合肥: 1.5 %宿州: 4.6 %宿州: 4.6 %常德: 1.5 %常德: 1.5 %成都: 1.5 %成都: 1.5 %昆明: 1.5 %昆明: 1.5 %晋城: 1.5 %晋城: 1.5 %朝阳: 1.5 %朝阳: 1.5 %江门: 3.1 %江门: 3.1 %济南: 1.5 %济南: 1.5 %深圳: 3.1 %深圳: 3.1 %石家庄: 1.5 %石家庄: 1.5 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %西宁: 13.8 %西宁: 13.8 %西安: 1.5 %西安: 1.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 18.5 %运城: 18.5 %邯郸: 3.1 %邯郸: 3.1 %郑州: 1.5 %郑州: 1.5 %长沙: 3.1 %长沙: 3.1 %黄冈: 1.5 %黄冈: 1.5 %其他China上海东莞乌鲁木齐佛山北京合肥宿州常德成都昆明晋城朝阳江门济南深圳石家庄芒廷维尤西宁西安贵阳运城邯郸郑州长沙黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (450) PDF downloads(33) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return