CHEN Zhihua, LI Wenjie, LIU Hongbo, GAO Xiujian, JING Sinan, LIU Wenrui. Research on Flexural Performance of Variable-Section Inverted Trapezoidal Steel Beams in Shenzhen Dayun Transportation Hub[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 88-94. doi: 10.13204/j.gyjzG23072910
Citation:
CHEN Zhihua, LI Wenjie, LIU Hongbo, GAO Xiujian, JING Sinan, LIU Wenrui. Research on Flexural Performance of Variable-Section Inverted Trapezoidal Steel Beams in Shenzhen Dayun Transportation Hub[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 88-94. doi: 10.13204/j.gyjzG23072910
CHEN Zhihua, LI Wenjie, LIU Hongbo, GAO Xiujian, JING Sinan, LIU Wenrui. Research on Flexural Performance of Variable-Section Inverted Trapezoidal Steel Beams in Shenzhen Dayun Transportation Hub[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 88-94. doi: 10.13204/j.gyjzG23072910
Citation:
CHEN Zhihua, LI Wenjie, LIU Hongbo, GAO Xiujian, JING Sinan, LIU Wenrui. Research on Flexural Performance of Variable-Section Inverted Trapezoidal Steel Beams in Shenzhen Dayun Transportation Hub[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 88-94. doi: 10.13204/j.gyjzG23072910
In order to study the flexural performance of variable-section inverted trapezoidal steel beams, the scaled specimens were designed, and four-point static loading tests were carried out, which were compared and analyzed with numerical simulations to reveal the stress distribution law of variable-section inverted trapezoidal beams under vertical loading. The results showed that the flexural capacity of the scaled specimen reached 770 kN, and the in-plane flexural performance was excellent, and there was no instability problem in the test. The numerical model exhibited the same deformation characteristics and the same stress distribution as the test results, and the error in the flexural capacity was 3.9%, and the error in the initial stiffness was 12.4%. Compared with the most unfavorable loading condition of the actual project, the safety coefficient of the bearing capacity of the variable cross-section inverted trapezoidal steel beam was 12.4. The deflection of the member under the design load is 4.14 mm, and it is in elastic stress state, which meets the deflection and engineering safety requirements.