Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xinping, LI Zhiqiang, ZHU Xiaodong, MENG Chunling, SHU Qianjin, YUAN Guanglin, LI Huipeng. Research on Surface Deformation Resistance of Split-Type Protective Plates for Transmission Towers with High-Low Legs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 196-206,233. doi: 10.13204/j.gyjzG23071406
Citation: WANG Xinping, LI Zhiqiang, ZHU Xiaodong, MENG Chunling, SHU Qianjin, YUAN Guanglin, LI Huipeng. Research on Surface Deformation Resistance of Split-Type Protective Plates for Transmission Towers with High-Low Legs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 196-206,233. doi: 10.13204/j.gyjzG23071406

Research on Surface Deformation Resistance of Split-Type Protective Plates for Transmission Towers with High-Low Legs

doi: 10.13204/j.gyjzG23071406
  • Received Date: 2023-07-14
  • A typical 220 kV transmission tower with high-low legs in mountainous slope areas of mining areas was taken as the object, and factors such as tower leg difference (0, 1, 2, 3 m), plate thickness (200, 400, 600 mm) and surface deformation direction (0°, 45°, 90°, 135°) were considered to study the surface deformation resistance of the split-type protective plate under the action of horizontal tension, horizontal compression, positive and negative curvature of the surface. The results indicated that the split-type protective plate could effectively reduce the axial force and relative displacement of the foundation of the transmission tower with high-low legs, and its protective effect was closely related to the type of surface deformation, direction of surface deformation, and tower leg level difference. The protective effect of the split-type protective plate increased with the increase of plate thickness, but when the plate thickness increased to a certain extent, its comprehensive protective effect no longer significantly increased with the increase of thickness. 400 mm was the optimal thickness for the split-type protective plate to balance the protective effect and economy. When the length direction of the split-type large plate was consistent with the direction of horizontal or curvature deformation on the surface, the protective effect of the large plate could be fully utilized, but the effect was relatively poor under surface deformation along other directions.
  • [1]
    史振华.采空区输电线路直线自立塔基础沉降及处理方案[J].山西电力技术, 1997(3):18-20,35.
    [2]
    孙俊华.煤矿采空区线路设计技术[J].山西电力, 2004(3):13-14.
    [3]
    代泽兵,鲁先龙,程永锋.煤矿采空区架空输电线路基础研究[J].武汉大学学报(工学版), 2009, 42(增刊1):312-316.
    [4]
    袁广林,杨庚宇,张云飞.地表变形对输电铁塔内力和变形的影响规律[J].煤炭学报, 2009, 34(8):1043-1047.
    [5]
    舒前进,袁广林,郭广礼,等.采煤沉陷区输电铁塔复合防护板基础抗变形性能及其板厚取值研究[J].防灾减灾工程学报, 2012, 32(3):294-299.
    [6]
    舒前进.采动区超高压输电铁塔破坏机理与变形控制技术研究[D].徐州:中国矿业大学, 2013.
    [7]
    谭晓哲.输电铁塔开孔复合板基础抗地表变形性能研究[D].徐州:中国矿业大学, 2015.
    [8]
    刘春城,查传明,王刚,等.土层水平运动下中空式混凝土复合防护大板基础研究[J].科学技术与工程,2015,15(33):212-217

    ,223.
    [9]
    张宏杰,杨风利,张鑫,等.基于现场实测沉降数据的复合防护板基础铁塔承载力评估[J].建筑结构,2018,48(13):90-95.
    [10]
    刘继武,韩恺,闫炜炀.山西采动影响区输电线路塔基区水土流失特点及防治措施[J].山西电力, 2021(5):23-26.
    [11]
    秦锋明,杨承矩.输电线路铁塔基础设计中的环境保护问题[J].广东输电与变电技术, 2006(4):58-60.
    [12]
    姜宏玺,张华英.输电线路自平衡交叉基础[J].电力建设, 2011, 32(5):53-57.
    [13]
    钟维军,庞红旗.山地输电铁塔掏挖式、岩石嵌固式与板式基础的比较分析[J].浙江电力, 2013, 32(7):15-17.
    [14]
    吕振,李小利.杭来湾煤矿采空区35 kV架空输电线路基础设计[J].山西建筑, 2020, 46(10):82-83.
    [15]
    鲁先龙,程永锋.斜坡地形输电线路基础和杆塔的配合技术[J].电力建设,2011,32(8):29-33.
    [16]
    薛乐.输电线路铁塔长短腿与高低基础配置的优化研究[D].长春:吉林建筑大学, 2017.
    [17]
    侯晓燕,崔强,鲁先龙,等.输电线路高低腿杆塔基础配置策略及软件研发[J].地下空间与工程学报,2014,10(增刊2):1917-1921.
  • Relative Articles

    [1]ZHAO Yong, DOU Hongqiang, WANG Peng, SUN Yongxin. Safety Assessment and Optimization of High-Voltage Transmission Towers Affected by Blasting Vibration of Adjacent Outlet Tunnel Based on Infinite Element Boundary[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 22-28. doi: 10.13204/j.gyjzG21042308
    [2]ZHANG Hongjie, LUO Kewei, LI Yangsen, WENG Lanxi. Collapse Analysis of a 500 kV Transmission Tower Under the Combined Action of Typhoon and Microtopography[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 29-34,93. doi: 10.13204/j.gyjzG22070403
    [3]CAO Meigen, ZHANG Ruoyu, ZHU Yunxiang, WANG Yu, KONG Fanfang, PAN Yiwei. Research on Wind Resistant Reinforcement of In-Plane Cables of Transmission Line Tower and Influence of Design Parameters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 48-56.
    [4]SUN Qigang, SONG Zhuoyan, JIAN Qingzhi, ZHAO Yong, HE Chunhui, CHEN Xiangjia. Wireless Sensor Network-Based Health Status Monitoring Technology for Transmission Tower Structures and Its Application[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 224-228. doi: 10.13204/j.gyjzG22060707
    [5]YANG Fengli, SHAO Shuai. Calculation Method of Wind Loads Acting on Transmission Towers Based on Drag Coefficients of Single Members[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 16-21. doi: 10.13204/j.gyjzG21081101
    [6]LIU Jianhong, YANG Bo, JIE Lianbin, SHU Qianjin, ZHONG Chongshuo, YUAN Guanglin. BEARING PERFORMANCES AND SAFETY ASSESSMENT OF TRANSMISSION TOWER-LINE SYSTEMS IN MINING AREAS UNDER SURFACE HORIZONTAL DEFORMATION AND BOUNDARY LAYER WIND[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 90-99. doi: 10.13204/j.gyjzG21080302
    [7]JIA Jianjun, LIU Chunkui, JIE Lianbin, SHU Qianjin, ZHONG Chongshuo, YUAN Guanglin. STUDY ON ANTI-GROUND-DEFORMATION CAPACITY OF TRANSMISSION TOWER LINE SYSTEMS IN MINING AREAS IN DIFFERENT DIRECTIONS SUBJECTED TO HORIZONTAL GROUND DEFORMATION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 123-128. doi: 10.13204/j.gyjzG21041302
    [18]Liu Penghui. STUDY ON THE CHARACTERISTICS OF DIFFERENTIAL SETTLEMENT IN INTEGRAL RAFT CONNECTION BETWEEN MAIN BUILDING WITH PODIUMS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 87-91. doi: 10.13204/j.gyjz201211019
    [19]Han Junke, Yang Jingbo, Yang Fengli, Li Zhenbao. STUDY ON BEARING CAPACITY OF REINFORCED AND STRENGTHENED TRANSMISSION TOWER[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 114-117,131. doi: 10.13204/j.gyjz201007028
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.9 %FULLTEXT: 9.9 %META: 88.7 %META: 88.7 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.8 %其他: 14.8 %上海: 2.8 %上海: 2.8 %信阳: 1.4 %信阳: 1.4 %北京: 0.7 %北京: 0.7 %南通: 0.7 %南通: 0.7 %厦门: 0.7 %厦门: 0.7 %嘉兴: 1.4 %嘉兴: 1.4 %多伦多: 0.7 %多伦多: 0.7 %天津: 1.4 %天津: 1.4 %常德: 1.4 %常德: 1.4 %广安: 0.7 %广安: 0.7 %张家口: 2.8 %张家口: 2.8 %徐州: 0.7 %徐州: 0.7 %成都: 1.4 %成都: 1.4 %扬州: 2.1 %扬州: 2.1 %晋城: 0.7 %晋城: 0.7 %杭州: 1.4 %杭州: 1.4 %济南: 1.4 %济南: 1.4 %济宁: 0.7 %济宁: 0.7 %湘潭: 0.7 %湘潭: 0.7 %漯河: 3.5 %漯河: 3.5 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 28.9 %芒廷维尤: 28.9 %芝加哥: 1.4 %芝加哥: 1.4 %西宁: 19.7 %西宁: 19.7 %西安: 0.7 %西安: 0.7 %运城: 2.8 %运城: 2.8 %郑州: 0.7 %郑州: 0.7 %重庆: 1.4 %重庆: 1.4 %银川: 0.7 %银川: 0.7 %长沙: 0.7 %长沙: 0.7 %其他上海信阳北京南通厦门嘉兴多伦多天津常德广安张家口徐州成都扬州晋城杭州济南济宁湘潭漯河绵阳芒廷维尤芝加哥西宁西安运城郑州重庆银川长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return