Citation: | FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618 |
[1] |
ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//IEEE International Conference on Image Processing (ICIP). 2016:3708-3712.
|
[2] |
DUNG C V, ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99:52-58.
|
[3] |
鲍跃全,李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5):1-11.
|
[4] |
ZHAO J, LI L. Research on image classification algorithm based on convolutional neural Network-TensorFlow[J/OL]. Journal of Physics,2010[2022-08-11].https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032054.
|
[5] |
GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018,77:354-377, 3.
|
[6] |
HE T, LIU Y, YU Y, et al. Application of deep convolutional neural network on feature extraction and detection of wood defects Çaǧlar Flrat Özgenel:Concrete Crack Images for Classification[J/OL]. Measurement, 2020[2023-02-11]. https://doi.org/10.1016/j.measurement.2019.107357.
|
[7] |
LI W, FIELD K G, MORGAN D. Automated defect analysis in electron microscopic images[J]. NPJ Computational Materials, 2018(4):1-9.
|
[8] |
DONG Y, SU C, QIAO P, et al. Microstructural crack segmentation of three-dimensional concrete images based on deep convolutional neural networks[J/OL]. Construction and Building Materials, 2020[2022-08-11].https://doi.org/10.1016/j.conbuildmat.2020.119185.
|
[9] |
DAS A K, LEUNG C K Y, WAN K T. Application of deep convolutional neural networks for automated and rapid identification and computation of crack statistics of thin cracks in strain hardening cementitious composites (SHCCs)[J/OL]. Cement and Concrete Composites, 2021[2022-08-11].https://doi.org/10.1016/j.cemconcomp.2021.104159.
|
[10] |
REZAIE A, ACHANTA R, GODIO M, et al. Comparison of crack segmentation using digital image correlation measurements and deep learning[J/OL]. Construction and Building Materials, 2020[2022-08-11].https://doi.org/10.1016/j.conbuildmat.2020.120474.
|
[11] |
OH B K, PARK H S, GLISIC B. Prediction of long-term strain in concrete structure using convolutional neural networks, air temperature and time stamp of measurements[J/OL]. Automation in Construction, 2021[2022-08-11].https://doi.org/10.1016/j.autcon.
|
[12] |
KHODABANDEHLOU H, PEKCAN G, FADALI M S. Vibration-based structural condition assessment using convolution neural networks[J/OL]. Structural Control and Health Monitoring,2018[2018-12-13].https://doi.org/10.1002/stc.2308.
|
[13] |
WANG L, KAWAGUCHI K, WANG P. Damaged ceiling detection and localization in large-span structures using convolutional neural networks[J/OL]. Automation in Construction,2020[2022-08-11].https://doi.org/10.1016/j.autcon.2020.103230.
|
[14] |
KUMAR N, RATHEE M, CHANDRAN N, et al. CrypTFlow:Secure TensorFlow inference[C]//Proceedings of the IEEE Symposium on Security and Privacy. 2020:336-353.
|
[15] |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2022-08-11]. http://arxiv.org/abs/1704.04861.
|
[16] |
ÖZGENEL F, GÖNENÇ S A. Performance comparison of pretrained convolutional neural networks on crack detection in buildings[C]//Proceedings of the ISARC 2018:35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon:The Future of Building Things. Berlin:2018.
|
[17] |
SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:IEEE, 2018:4510-4520.
|
[18] |
Çaǧlar Flrat Özgenel:Concrete crack images for classification[R/OL].Berlin:Orta Dogu Teknik Universitesi, 2019[2019-07-23]. https://data.mendeley.com/datasets/5y9wdsg2zt/2.
|