Citation: | ZHENG Jie, LUO Surong, OU Xiang, WANG Shijie. Effects of Different Gelling Compositions on Drying Shrinkage Properties of 3D Printed Cement-Based Materials[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 151-156,28. doi: 10.13204/j.gyjzG23021512 |
[1] |
XIAO J, LYU Z, DUAN Z, et al. Study on preparation and mechanical properties of 3D printed concrete with different aggregate combinations[J/OL]. Journal of Building Engineering, 2022,51[2023-02-15]. https://doi.org/10.1016/j.jobe.2022.104282.
|
[2] |
BUSWELLI R A, LEAL D, JONES S Z, et al. 3D printing using concrete extrusion:a roadmap for research[J]. Cement & Concrete Research, 2018,112:37-39.
|
[3] |
PANDA B, RUAN S, UNHUER C, et al. Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing[J/OL]. Composites Part B:Engineering, 2020,186[2023-02-15]. https://doi.org/10.1016/j.compositesb.2020.107826.
|
[4] |
崔天龙, 王里, 马国伟, 等. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2):76-82.
|
[5] |
侯东伟. 混凝土自身与干燥收缩一体化及相关问题研究[D]. 北京:清华大学, 2010.
|
[6] |
廖伟华, 陈金义. 西北大跨连续刚构施工期腹板开裂成因分析[J]. 公路, 2020, 65(11):183-188.
|
[7] |
ZHANG H, XIAO J. Plastic shrinkage and cracking of 3D printed mortar with recycled sand[J/OL]. Construction and Building Materials, 2021, 302[2023-02-15]. https://doi.org/10.1016/j.conbuildmat.2021.124405.
|
[8] |
MOELICH G M, KRUGER J, COMBRINCK R. Plastic shrinkage cracking in 3D printed concrete[J/OL]. Composites Part B:Engineering, 2020,200[2023-02-15]. https://doi.org/10.1016/j.compositesb.2020.108313.
|
[9] |
胡红梅, 马保国. 混凝土矿物掺合料[M]. 北京:中国电力出版社, 2016.
|
[10] |
张涛, 朱成. 水泥-硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J]. 硅酸盐通报, 2022, 41(3):903-912.
|
[11] |
LEE K M, LEE H K, LEE S H, et al. Autogenous shrinkage of concrete containing granulated blast-furnace slag[J]. Cement and Concrete Research, 2006, 36(7):1279-1285.
|
[12] |
SHEN D, WANG W, LI Q, et al. Early-age behaviour and cracking potential of fly ash concrete under restrained condition[J].Magazine of Concrete Research, 2020, 72(5):246-261.
|
[13] |
李维红, 常西栋, 王乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10):3101-3107
,3114.
|
[14] |
VOIGT T, MBELE J J, WANG K, et al. Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement[J]. Journal of Materials in Civil Engineering, 2010, 22(2):196-206.
|
[15] |
杨钱荣, 赵宗志, 肖建庄, 等.矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2):412-418.
|
[16] |
中华人民共和国国家质量监督检验检验总局. 水泥胶砂流动度测定方法:GB/T 2419-2005[S]. 北京:中国标准出版社, 2005.
|
[17] |
中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准:JGJ/T 70-2009[S]. 北京:中国建筑工业出版社, 2009.
|
[18] |
赵联桢. 矿物掺合料对混凝土早期收缩与力学性能的影响[D]. 南京:南京水利科学研究院, 2010.
|
[19] |
WONGKEO W, THONGSANITGARN P, CHAIPANICH A. Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars[J]. Materials & Design, 2012, 36:655-662.
|
[20] |
ZHAO Y, GONG J, ZHAO S. Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag[J]. Construction and Building Materials, 2017,155:145-153.
|
[21] |
YANG T, ZHU H, ZHANG Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars[J]. Construction and Building Materials, 2017, 153:284-293.
|
[22] |
李顺凯. 水泥砂浆的干缩研究[D]. 南京:南京工业大学, 2004.
|
[23] |
吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979(3):82-90.
|
[24] |
郑小青, 周泽友. 矿物掺和料与再生骨料对水泥强度和收缩性能的影响[J]. 硅酸盐通报, 2017, 36(1):191-196.
|
[25] |
曾昊, 詹培敏, 李增, 等. 矿物掺合料对水泥基材料干燥收缩影响的研究进展[J]. 硅酸盐通报, 2020, 39(9):2714-2723.
|