Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Lu Huaxi, Liang Pingying, Qiu Zaosheng. COMPARATIVE ANALYSIS OF SITE CLASSFICATION AND SITE EFFECTS BETWEEN CHINESE CODE GB50011—2001 AND FEMA450[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 79-83. doi: 10.13204/j.gyjz200906019
Citation: HE Li, SHA Huiling, CHONG Xun, GAO Jun, FENG Hui, LI Zhipeng, ZHAO Peng. State-of-the-Art of Connection Systems in Precast Concrete Cladding Panels and Their Effects on Seismic Performance of the Structure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 207-218. doi: 10.13204/j.gyjzG23020707

State-of-the-Art of Connection Systems in Precast Concrete Cladding Panels and Their Effects on Seismic Performance of the Structure

doi: 10.13204/j.gyjzG23020707
  • Received Date: 2023-02-07
    Available Online: 2024-05-29
  • Precast concrete cladding panel serves as a high performance non-structural envelope element. The connection system between the cladding panels and the main structure is a critical factor affecting the seismic performance of the structure. The connection methods between the cladding panels and the main structure can be classified into three categories: rigid connection, flexible connection, and energy-dissipative connection. Researchers have developed some new connections and studied their effects on the seismic performance of the main structure. The results demonstrated that when rigid connections were used between the panels and the main structure, significant interaction occurred, resulting in increased structural stiffness, strength, and seismic response. Proper flexible connections could facilitate relative independent deformation between the panels and the main structure, thereby reducing the impact of the panels on the main structure. Flexible connections were highly dependent on the construction manner, as well as the quality and precision of the construction. Energy-dissipative connections could utilize the relative deformation between the panels and the main structure to dissipate seismic energy, thereby proficiently controlling the damage to both the main structure and the panels. The paper provided a review and summary of the aforementioned research and offered prospects for further studies.
  • [1]
    BOURNAS D, NEGRO P, TAUCER F. Performance of industrial buildings during the Emilia earthquakes in Northern Italy and recommendations for their strengthening[J]. Bulletin of Earthquake Engineering, 2013, 12(5):2383-2404.
    [2]
    TONIOLO G, COLOMBO A. Precast concrete structures:the lesson learnt from L'Aquila earthquake[J]. Structural Concrete, 2012, 13(2):73-83.
    [3]
    MENEGOTTO M. Observations on precast concrete structures of industrial buildings and warehouses[C]//Special issue on the 2009 L'Aquila earthquake. Raquel, Italy:2009:149-153.
    [4]
    BAIRD A, PALERMO A, PAMPANIN S. Facade damage assessment of concrete buildings in the 2011 Christchurch earthquake[J]. Structural Concrete, 2012, 13:3-13.
    [5]
    COLOMBO A, TONIOLO G. Problems of seismic design of the cladding panels of precast buildings[C]//New Zealand society for earthquake engineering (NZSEE) annual conference. Christchurch, New Zealand:2012:13-15.
    [6]
    ISO. Simplified design of connections of concrete claddings to concrete structures:ISO 22502:2020[S]. Geneva, Switzerland:International Organization for Standardization, 2020.
    [7]
    PCI. Architectural precast concrete[M]. 2nd Edition. Jackson Blvd., Chicago, Illinois:PCI Architectural Precast Concrete Manual Committee, 175 W, 1989.
    [8]
    PCI. Architectural precast concrete[M]. 3rd Edition. Jackson Blvd., Chicago, Illinois:PCI Architectural Precast Concrete Manual Committee, 175 W, 2007.
    [9]
    HENRY R M, ROLL F. Cladding frame interaction[J]. Journal of Structural Engineering, 1986, 112(4):815-834.
    [10]
    BAIRD A, DIAFERIA R, PALERMO A, et al. Parametric investigation of seismic interaction between precast concrete cladding systems and moment resisting frames[C]//Structures congress 2011. Las Vegas, Nevada:2011:1286-1297.
    [11]
    BIONDINI F, DAL LAGO B, TONIOLO G. Role of wall panel connections on the seismic performance of precast structures[J]. Bulletin of Earthquake Engineering, 2013, 11(4):1061-1081.
    [12]
    MAGLIULO G, ERCOLINO M, MANFREDI G. Influence of cladding panels on the first period of one-story precast buildings[J]. Bulletin of Earthquake Engineering, 2015, 13(5):1531-1555.
    [13]
    OSTETTO L, SOUSA R, RODRIGUES H, et al. Assessment of the seismic behavior of a precast reinforced concrete industrial building with the presence of horizontal cladding panels[J/OL]. Buildings, 2021, 11(9)[2022-09-01]. https://doi.org/10.3390/buildings11090400.
    [14]
    于敬海,张刚,李久鹏.外挂墙板对框架结构内力的影响分析[J].低温建筑技术, 2011, 33(8):31-34.
    [15]
    龚健尧.装配整体式框架结构外挂墙板地震作用分析[D].成都:西南交通大学, 2017.
    [16]
    郭宏超,孙立建,刘云贺,等.柔性钢框架外挂再生混凝土墙结构抗震性能试验研究[J].建筑结构学报, 2017, 38(2):63-73.
    [17]
    DEL MONTE E, FALSINI C, BOSCHI S, et al. An innovative cladding panel connection for RC precast buildings[J]. Bulletin of Earthquake Engineering, 2019, 17:845-865.
    [18]
    中华人民共和国住房和城乡建设部.预制混凝土外挂墙板(一):16J110-216G333[S].北京:中国计划出版社, 2016.
    [19]
    安徽省市场监督管理局.预制混凝土夹心保温外挂墙板技术规程:DB34/T 3952-2021[S].合肥:安徽省工程建设标准设计办公室, 2022.
    [20]
    中华人民共和国住房和城乡建设部.预制混凝土外挂墙板应用技术标准:JGJ/T 458-2018[S].北京:中国建筑工业出版社, 2018.
    [21]
    WANG M L, EERI M. Cladding performance on a full scale test frame[J]. Earthquake Spectra, 1987, 3(1):119-173.
    [22]
    RIHAL S S. Earthquake resistance and behavior of heavy facades/claddings and connections in medium-rise steel-framed buildings[C]//Proc.9th World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan:1988:207-212.
    [23]
    CHAN R W K. Experimental investigation of push-pull precast cladding connections[D]. San Francisco, California, USA:Master Thesis at San Jose State University, 2003.
    [24]
    PANTOLI E. Seismic behavior of architectural precast concrete cladding, panels and connections[D]. UC San Diego:University of California, 2016.
    [25]
    ISAKOVIĆ T, ZOUBEK B, LOPATIC J, et al. Experimental research of typical cladding panel connections in industrial buildings[C]. Proceedings of 2nd ECEES. 2014:24-29.
    [26]
    GAMS M, STAREŠINIČ G, ISAKOVIĆ T. Full-scale shaking table test of a reinforced concrete precast building with horizontal concrete cladding panels and a numerical simulation[J/OL]. Journal of Building Engineering, 2022[2022-09-01]. https://doi.org/10.1016/j.jobe.2022.104707.
    [27]
    ZOUBEK B, FISCHINGER M, ISAKOVIĆ T. Cyclic response of hammer-head strap cladding-to-structure connections used in RC precast building[J]. Engineering Structures, 2016, 119:135-148.
    [28]
    ZOUBEK B, FISCHINGER M, ISAKOVIC T. Seismic response of short restrainers used to protect cladding panels in RC precast buildings[J]. Journal of Vibration and Control, 2018, 24(4):645-658.
    [29]
    DAL LAGO B, LAMPERTI T M. Sliding channel cladding connections for precast structures subjected to earthquake action[J]. Bulletin of Earthquake Engineering, 2018, 16(11):5621-5646.
    [30]
    DEL MONTE E, FALSINI C, BOSCHI S, et al. An innovative cladding panel connection for RC precast buildings[J]. Bulletin of Earthquake Engineering, 2019, 17(2):845-865.
    [31]
    陈涛,李国强,田春雨,等.线支承式预制外挂墙板抗震性能试验研究[J].建筑科学, 2014, 30(3):53-58.
    [32]
    种迅,姚华庭,蒋庆,等.含线连接夹心保温外挂墙板装配式混凝土剪力墙结构抗震性能研究[J].建筑结构学报, 2019, 40(12):51-59.
    [33]
    侯和涛,王文豪,曹运昌,等.与足尺钢框架柔性连接的外挂复合墙板振动台试验研究[J].建筑结构学报, 2019, 40(12):21-31.
    [34]
    肖明,王赞,张林振,等.预制混凝土点支承外挂墙板与主体结构的连接研究[J].建筑结构, 2019, 49(11):9-13.
    [35]
    姜维.一种装配式混凝土结构外挂墙板连接节点抗震性能分析[D].秦皇岛:燕山大学, 2021.
    [36]
    BHATTA J, DHAKAL R P, SULLIVAN T J. Seismic performance of a rocking precast concrete cladding panel system under lateral cyclic displacement demands[J]. Journal of Earthquake Engineering, 2023, 27(4):929-958.
    [37]
    张国伟,高海智,汪浩强,等.新型预制围护墙体-两层足尺钢筋混凝土框架抗震性能试验研究[J].工业建筑, 2022, 52(6):61-70.
    [38]
    OKAZAKI T, NAKASHIMA M, SUITA K, et al. Interaction between cladding and structural frame observed in a full-scale steel building test[J]. Earthquake Engineering&Structural Dynamics, 2007, 36(1):35-53.
    [39]
    NEGRO P, TORNAGHI M L. Seismic response of precast structures with vertical cladding panels:the SAFECLADDING experimental campaign[J]. Engineering Structures, 2017, 132:205-228.
    [40]
    张艳霞,程啸天,张爱林,等.钢框架钢管锚滑移节点外挂蒸压加气混凝土墙板振动台试验研究[J].建筑钢结构进展, 2021, 23(10):67-74.
    [41]
    FERRARA L, FELICETTI R, TONIOLO G, et al. Friction dissipative devices for cladding panels in precast buildings:an experimental investigation[J]. European Journal of Environmental and Civil Engineering, 2011, 15(9):1319-1338.
    [42]
    BIONDINI F, DAL LAGO B, TONIOLO G. Experimental and numerical assessment of dissipative connections for precast structures with cladding panels[C]//2nd European conference on earthquake engineering and seismology (ECEES). Istanbul, Turkey:2014:25-29.
    [43]
    DAL LAGO B, BIONDINI F, TONIOLO G. Friction-based dissipative devices for precast concrete panels[J]. Engineering Structures, 2017, 147:356-371.
    [44]
    DAL LAGO B, BIONDINI F, TONIOLO G. Seismic performance of precast concrete structures with energy dissipating cladding panel connection systems[J]. Structural Concrete, 2018, 19(6):1908-1926.
    [45]
    DAL LAGO B, BIANCHI S, BIONDINI F. Diaphragm effectiveness of precast concrete structures with cladding panels under seismic action[J]. Bulletin of Earthquake Engineering, 2019, 17(1):473-495.
    [46]
    DAL LAGO B, BIONDINI F, TONIOLO G. Experimental investigation on steel W-shaped folded plate dissipative connectors for horizontal precast concrete cladding panels[J]. Journal of Earthquake Engineering, 2018, 22(5):778-800.
    [47]
    李久鹏.工业化住宅外挂墙板耗能减震性能研究[D].天津:天津大学, 2009.
    [48]
    隋伟宁,马勇,杨海涛,等.预制混凝土外挂墙板与钢框架摩擦耗能新型连接节点力学性能试验研究[J].工业建筑, 2023, 53(5):109-117.
    [49]
    PINELLI J P, CRAIG J I, GOODNO B J, et al. Passive control of building response using energy dissipating cladding connections[J]. Earthquake Spectra, 1993, 9(3):529-546.
    [50]
    KARADOĞAN F, YÜKSEL E, KHAJEHDEHI A, et al. Cyclic behavior of reinforced concrete cladding panels connected with energy dissipative steel cushions[J]. Engineering Structures, 2019, 189:423-439.
    [51]
    ÖZKAYNAK H, KHAJEHDEHI A, YÜKSEL E, et al. Improvement of seismic performance of precast frames with cladding panels fastened by energy dissipative steel cushions[J]. Bulletin of Earthquake Engineering, 2021, 19(12):5339-5367.
    [52]
    颜雪雪.用于预制装配式外墙板间功能可恢复金属阻尼器抗震性能研究[D].济南:山东大学, 2020.
    [53]
    种迅,霍璞,沙慧玲,等.单跨两层含减震外挂墙板装配式混凝土框架拟静力试验研究[J].工程力学, 2024, 41(1):114-123.
    [54]
    种迅,沙慧玲,解琳琳,等.基于能量平衡的含减震外挂墙板钢筋混凝土框架结构的设计方法研究[J].工业建筑, 2021, 51(7):98-106.
    [55]
    霍璞.含减震外挂墙板装配式混凝土框架结构混合试验研究[D].合肥:合肥工业大学, 2022.
    [56]
    TORNAGHI M L, SCALBI A, NEGRO P. Precast RC buildings:what is wrong with horizontal cladding panels[J/OL]. Engineering Structures, 2022, 266[2022-09-01]. https://doi.org/10.1016/j.engstruct.2022.114456.
  • Relative Articles

    [1]GUO Zhaosheng, HE Wubin, LIU Jialong, AN Zengjun. Experimental Research on Shear Capacity of PHC Pipe Pile Strengthened with CFRP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 7-11,54. doi: 10.13204/j.gyjzG21111710
    [2]MOU Yanling, JIA Bin, CHEN Baifan, HUANG Hui, LU Yonggang. EXPERIMENTAL STUDY OF SHEAR PERFORMANCE OF CFRP REINFORCED CONCRETE INTERFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 160-165. doi: 10.13204/j.gyjzG19122806
    [3]Li Zhibing. ANALYSIS OF STRESS LOSS OF PRESTRESSED CFRP PLATE STRENGTHENED BRIDGE STRUCTURE CAUSED DUE TO TEMPERATURE DIFFERENCE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 162-165.
    [4]He Shihua. DISCUSSION ON MECHANICAL PROPERTIES OF INDEX VALVE FOR CARBON FIBER SHEET[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 119-121. doi: 10.13204/j.gyjz2011205022
    [5]Cheng Donghui, Wang Tianfeng, Yi Yamin. THE MECHANICAL BEHAVIOR EXPERIMENT AND ANALYSIS OF CONTINUOUS BEAMS STRENGTHENED WITH CARBON FIBER REINFORCED POLYMER SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 25-28,63. doi: 10.13204/j.gyjz201110006
    [6]Zhang Guangtai, Liu Qing, Wang Kexin. BENDING TESTS AND NUMERICAL ANALYSIS OF CFRP STRENGTHENED RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 80-83. doi: 10.13204/j.gyjz200908021
    [7]Zhang Ke, Ye Lieping, Yue Qingrui. ANALYSIS OF FATIGUE LIFE OF CONCRETE BEAMS REINFORCED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 107-112. doi: 10.13204/j.gyjz200807027
    [8]Zhang Ke, . ANALYSIS OF FLEXURAL FAILURE MODE OF RC BEAMS STRENGTHENED WITH CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(4): 81-83. doi: 10.13204/j.gyjz200704022
    [9]Wang Bu, Liu Boquan, Wang Pu. EXPERIMENT ON SEISMIC BEHAVIOR OF CFRP - STRENGTHENED EXTERIOR RC FRAME JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 102-105,122. doi: 10.13204/j.gyjz200703025
    [10]Xie Qifang, Zhao Hongtie, Xue Jianyang, Wu Zhaohua. EXPERIMENTAL STUDY ON BENDING BEHAVIOR OF TIMBER BEAMS STRENGTHENED WITH CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 104-107. doi: 10.13204/j.gyjz200707030
    [11]Zhang Bin, Fan Jin. PREDICTING THE ULTIMATE BOND STRENGTH OF CFRP BONDED TO CONCRETE USING ARTIFICIAL NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 66-71,41. doi: 10.13204/j.gyjz200703017
    [12]Zhang Ke, Ye Lieping, Yue Qingrui. ANALYSIS OF MAXIMUM TENSIONED PRESTRESS AND INTERFACIAL BOND STRESS OF PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 96-99. doi: 10.13204/j.gyjz200707028
    [13]Zhang Ke, . EXPERIMENTAL STUDY ON T-REINFORCED CONCRETE BEAMS STRENGTHENED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 86-89,95. doi: 10.13204/j.gyjz200612024
    [14]Ma Jianxun, Hu Ping, Jiang Xiangmin, Hu Ming. EXPERIMENTAL RESEARCH ON AXIAL COMPRESSIVE BEHAVIORS FOR TIMBER COLUMN STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 40-44,55. doi: 10.13204/j.gyjz200508009
    [15]Yue Qingrui, Cao Jinsong, Yang Yongxin, Zhao Yan. NORMATIVE SPECIMEN OF CARBON FIBER REINFORCED POLYMER SHEETS FOR CHECKING PROPERTY[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 1-4. doi: 10.13204/j.gyjz200508001
    [16]Wei Hongqiang, Zhang Yuan, Huang Xiaoxu. COMPARISON BETWEEN CONSTRUCTION PROCEDURES FOR CONCRETE BEAMS REINFORCED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 90-93. doi: 10.13204/j.gyjz200511027
    [17]Tian Shui, Gu Qian. RESEARCH ON FORCED PERFORMANCE OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 88-91. doi: 10.13204/j.gyjz200506026
    [18]Zhang Ke, Ye Lieping, Yue Qingrui. EXPERIMENTAL STUDY ON FLEXURAL FATIGUE BEHAVIOR OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 13-19. doi: 10.13204/j.gyjz200508004
    [19]Ye Lieping, Zhuang Jiangbo, Zeng Pan, Zhou Xiaorong, ShaWulieti, Yang Yongxin. EXPERIMENTAL STUDY ON REINFORCED CONCRETE T- BEAMS STRENGTHENED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 7-12. doi: 10.13204/j.gyjz200508003
    [20]Li Yuan, Zhang Xinghu, Zhang Baoyin, . FATIGUE EXPERIMENTAL STUDY ON CONCRETE BEAM STRENGTHENED WITH CARBON FIBER REINFORCED PLASTIC SHEET[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 22-24,48. doi: 10.13204/j.gyjz200404006
  • Cited by

    Periodical cited type(2)

    1. 卢春玲,袁国华,王强,陈建通. 双端张拉CFRP布加固大直径RC圆柱的预应力损失. 工程抗震与加固改造. 2023(04): 138-147+169 .
    2. 卢春玲,袁国华,黄东发,王强. 自锁/楔片式锚具下碳纤维布加固RC圆柱预应力损失. 复合材料科学与工程. 2022(08): 5-14 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.7 %FULLTEXT: 9.7 %META: 86.7 %META: 86.7 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.0 %其他: 15.0 %China: 1.8 %China: 1.8 %北京: 27.4 %北京: 27.4 %南宁: 2.7 %南宁: 2.7 %台州: 0.9 %台州: 0.9 %太原: 0.9 %太原: 0.9 %常德: 0.9 %常德: 0.9 %张家口: 5.3 %张家口: 5.3 %徐州: 0.9 %徐州: 0.9 %昆明: 0.9 %昆明: 0.9 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.9 %朝阳: 0.9 %石家庄: 1.8 %石家庄: 1.8 %芒廷维尤: 13.3 %芒廷维尤: 13.3 %芝加哥: 5.3 %芝加哥: 5.3 %西宁: 8.0 %西宁: 8.0 %贵阳: 1.8 %贵阳: 1.8 %运城: 8.0 %运城: 8.0 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %长沙: 0.9 %长沙: 0.9 %其他China北京南宁台州太原常德张家口徐州昆明晋城朝阳石家庄芒廷维尤芝加哥西宁贵阳运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads(1) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return