Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Changjiang, MA Qingang, ZHANG Yuling, LI Jinbo, YANG Yuntao, ZHANG Nan, XIE Aihua, GAO Zhanjun, ZHANG Xianqing. Experimental Research on Fatigue Performance of Q345qD Steel for Bridges Based on Digital Image[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 157-163,134. doi: 10.13204/j.gyjzG23010509
Citation: WANG Changjiang, MA Qingang, ZHANG Yuling, LI Jinbo, YANG Yuntao, ZHANG Nan, XIE Aihua, GAO Zhanjun, ZHANG Xianqing. Experimental Research on Fatigue Performance of Q345qD Steel for Bridges Based on Digital Image[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 157-163,134. doi: 10.13204/j.gyjzG23010509

Experimental Research on Fatigue Performance of Q345qD Steel for Bridges Based on Digital Image

doi: 10.13204/j.gyjzG23010509
  • Received Date: 2023-01-05
    Available Online: 2023-12-18
  • In recent years, steel bridges, steel-concrete composite girder bridges and other steel bridges have been widely used in China. In order to ensure the safety and durability of bridges, it is very important to carry out in-depth research on fatigue state assessment of steel bridges. Among them, the application of modern technology such as digital image acquisition and transmission in fatigue monitoring and assessment is one of the research hotspots. In order to understand the morphological and data characteristics of digital image in the fatigue research of steel bridge structure details, the fatigue and three-dimensional digital strain image measurement tests were carried out synchronously by using common bridge steel Q345qD specimens. Automatic processing and fast extraction methods were explored for the maximum strain on the image. The morphological characteristics of the maximum strain of the image with the number change of fatigue cycles were analyzed. In addition the test data were fitted to form a measured curve function and were optimized. Combined with the fatigue S-N curve equation, the general formula for calculating the strain changes with the fatigue process was determined. The results showed that the measured maximum strain value image could be cropped, identified and converted digitally by a batch program, which could meet the requirements of fast extraction. The measured strain curve showed an upward trend of exponential function with the increase of number of fatigue cycles, and the trend curve had a certain width with the cyclic loading of fatigue. By extracting the peak point data, the strain showed a significant upward change at approximately 70% of fatigue life, or earlier. It was shown that the curve of digital image strain was the refinement of the damage process at a single measuring point on the fatigue S-N curve. The proposed ε-N' general formula integrated strain curve with S-N curve exhibited the inherent damage characteristics of the structural details.
  • loading
  • [1]
    宗亮,施刚,王元清,等. Q345qD桥梁钢对接焊缝疲劳裂纹扩展性能试验研究[J]. 铁道科学与工程学报,2015(1):105-112.
    [2]
    王春生,段兰,郑丽,等. 桥梁高性能钢HPS 485W疲劳裂纹扩展速率试验研究[J]. 工程力学,2013(6):212-216.
    [3]
    包龙生,朱春莹,于玲,等. 高坎桥正交异性钢桥面板的疲劳分析[J]. 世界桥梁,2013(6):39-42.
    [4]
    刘益铭,张清华,崔闯,等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报,2016,29(7):89-95.
    [5]
    朱劲松,郭耀华. 正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J]. 振动与冲击,2014,33(14):40-47

    ,71.
    [6]
    王春生,翟慕赛,唐友明,等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报,2017,30(3):82-95.
    [7]
    唐亮,黄李骥,王秀伟,等. 钢桥面板U肋-横隔板连接接头应力分析[J]. 公路交通科技,2014,31(5):93-101.
    [8]
    CORREIA J, HUFFMAN P, DE JESUS A, et al. Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details[J]. Theoretical and Applied Fracture Mechanics,2017,92(12):252-265.
    [9]
    周洪亮. 长春市二环路四跨连续钢箱梁检测及损伤识别方法研究[D]. 长春:吉林大学,2015.
    [10]
    王宇,李洪双. 最大熵准则识别材料疲劳寿命分布[J]. 航空工程进展,2015,6(3):297-305.
    [11]
    DERVILIS N, CHOI M, TAYLOR S, et al. On damage diagnosis for a wind turbine blade using pattern recognition[J]. Journal of Sound and Vibration, 2014,333(6):1833-1850.
    [12]
    罗豪鑫,陈传勇,刘建中,等. 基于遗传规划算法的不同应力比下不同厚度7050铝合金疲劳裂纹扩展寿命预测[J]. 材料科学与工程学报,2017,35(1):26-31.
    [13]
    SIH G. Signal recognition of fatigue crack growth in bridge structures connected to specimen behavior[J]. Bridge Structures, 2006,2(3):133-145.
    [14]
    米红林,张熹,陆鹏. 几种应变检测的光力学测试方法及其比较[J]. 力学季刊, 2013, 34(3):409-414.
    [15]
    高红俐,刘欢,齐子诚,等. 基于高速数字图像相关法的疲劳裂纹尖端位移应变场变化规律研究[J]. 兵工学报, 2015,36(9):1772-1781.
    [16]
    高红俐,郑欢斌,姜伟,等. 基于图像处理的疲劳裂纹扩展长度在线测量方法[J]. 中国机械工程,2016,27(7):917-924.
    [17]
    陈新,许巍,何玉怀. 基于DIC的超高频振动疲劳试样动态全场应变测量方法[J]. 实验力学,2021,36(5):677-685.
    [18]
    朱志辉,冯乾朔,肖权清,等. 基于DIC技术和无网格法的裂尖应变场分析方法[J]. 土木工程学报,2021,54(6):99-109.
    [19]
    宋海鹏,刘长春. 基于数字图像相关的预腐蚀2024-T4铝合金疲劳开裂实验研究[J]. 航空材料学报,2020,40(2):43-52.
    [20]
    张健. 304奥氏体不锈钢低周疲劳及疲劳裂纹扩展规律研究[D]. 镇江:江苏理工学院,2021.
    [21]
    张水强. 基于图像相关的金属材料疲劳与断裂力学测试技术研究[D]. 上海:上海大学,2018.
    [22]
    范亚夫,魏延鹏,薛跃军,等. 数字图像相关测试技术在霍普金森杆加载实验中的应用[J]. 实验力学,2015,30(5):590-598.
    [23]
    熊拥军,刘同成,闫小青,等. ARAMIS应变测量系统在铝合金材料拉伸试验中的应用[J]. 塑性工程学报,2018,25(4):298-304.
    [24]
    王德强. 基于数字图像相关法的NiCrMoV钢焊接接头原位疲劳实验研究[D]. 南昌:华东理工大学,2018.
    [25]
    郝智彦,黄志勇,王清远. 不锈钢焊接件低周疲劳固有耗散分析[J]. 中国机械工程,2020,31(17):2045-2050.
    [26]
    蒋丛笑. 平板对接焊钢结构构件焊接节点低周疲劳破坏机理研究[D]. 南京:东南大学,2018.
    [27]
    陈国强,彭文静,吴安如. 基于DIC技术的Y型焊接接头应变集中实验研究[J]. 机械强度,2016,38(5):1071-1075.
    [28]
    张清华,崔闯,卜一之,等. 钢结构桥梁疲劳2019年度研究进展[J]. 土木与环境工程学报(中英文),2020,42(5

    ):147-158.
    [29]
    张玉玲,谢爱华,杨云涛,等. 数字图像应用于疲劳监测的测量参数研究[J]. 钢结构(中英文),2022,37(6):18-27.
    [30]
    张玉玲,戴福忠,陶晓燕,等. 14MnNbq、16Mnq钢及其焊接冲击韧性CVN试验研究[J]. 中国铁道科学,2004,25(3):80-85.
    [31]
    张玉玲,王冒明,吴新如,等. 铁路桥梁钢及焊缝的CTOD性能[J]. 清华大学学报,2005,45(5):585-588.
    [32]
    钟群鹏,张峥,李洁,等. 材料韧脆转移过程的数学模拟和定量分析[J]. 机械工程学报,1992,28(5):1-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return