Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WU Kui. Cusp Anomaly Recognition Method for Structural Monitoring Data[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 37-41. doi: 10.13204/j.gyjzG23010503
Citation: WU Kui. Cusp Anomaly Recognition Method for Structural Monitoring Data[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 37-41. doi: 10.13204/j.gyjzG23010503

Cusp Anomaly Recognition Method for Structural Monitoring Data

doi: 10.13204/j.gyjzG23010503
  • Received Date: 2023-01-05
    Available Online: 2023-05-25
  • Publish Date: 2023-02-20
  • Due to abnormal equipment or environmental noise, cusp anomaly data usually occurs in structural monitoring data. Manual handing is time-consuming, and cusp anomaly data disturbs the accuracy of alarm. Based on moving average filter and 3σ criterion, dual-window sliding filter was used for jump value anomaly recognition in structural monitoring. Abnormal data was translated to reasonable data by reasonable representative value of abnormal data based on 3σ criterion. The phenomenon of the jump of construction data was considered in moving average filter. Thus, misjudgment was solved. The proposed method was verified by real monitoring data in Hangzhouxi Railway Station. The results indicated that dual-window sliding filter could identify the abnormal jump point efficiently and avoid misjudgment by the phenomenon of the jump of construction data.
  • loading
  • [1]
    LUO Y, YE Z, GUO X, et al. Data missing mechanism and missing data real-time processing methods in the construction monitoring of steel structures[J]. Advances in Structural Engineering, 2015, 18(4):585-601.
    [2]
    许德旺. 基于桥梁监测数据的结构性能三层次评估方法[D]. 南京:东南大学, 2016.
    [3]
    罗永峰, 叶智武, 郭小农. 钢结构施工过程监测数据缺失机理与处理方法[J]. 同济大学学报(自然科学版), 2014, 42(6):823-829.
    [4]
    罗永峰, 叶智武, 王磊. 大型复杂钢结构施工过程监测系统研究现状[J]. 施工技术, 2015, 44(2):68-74.
    [5]
    沙定国. 误差分析与测量不确定度评定[M].北京:中国计量出版社, 2003:68-76.
    [6]
    梁晋文,陈林才,何贡. 误差理论与数据处理[M].北京:中国计量出版社,1989:66-68.
    [7]
    刘建,刘文金. 应用格罗布斯准则判定测量结果中的粗大误差[J].设计与研究,2006(2):20-21.
    [8]
    张世箕. 测量误差及数据处理[M].北京:科学出版社, 1979:42-46.
    [9]
    王鑫,吴先球,蒋珍美,等. 用Origin剔除线性拟合中实验数据的异常值[J].山西师范大学学报(自然科学版),2003,17(1):45-49.
    [10]
    雷洪. 粗差判别方法的比较与讨论[J].石油仪器, 1997,11(1):54-64.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return