Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LI Zhenling, QIN Siyuan. Study on Horizontal Load-Bearing and Deformation Performances of Monopile Foundations for Offshore Wind Turbines Based on In-Situ Static Load Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 13-18. doi: 10.13204/j.gyjzG22122304
Citation: LI Zhenling, QIN Siyuan. Study on Horizontal Load-Bearing and Deformation Performances of Monopile Foundations for Offshore Wind Turbines Based on In-Situ Static Load Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 13-18. doi: 10.13204/j.gyjzG22122304

Study on Horizontal Load-Bearing and Deformation Performances of Monopile Foundations for Offshore Wind Turbines Based on In-Situ Static Load Tests

doi: 10.13204/j.gyjzG22122304
  • Received Date: 2022-12-23
    Available Online: 2023-08-18
  • The horizontal bearing capacity and deformation characteristics for monopile foundations of offshore wind turbines directly influenced the stability and safety of the whole structure and wind turbine operation. In order to study the horizontal bearing capacity and deformation characteristics of monopile foundations, finite element numerical simulations were used to analyze the pile-soil contact model, soil parameters and variable characteristics of horizontal displacement and bending moment of piles based on the in-situ static load tests of single piles. Moreover, the method of the p-y curve recommended by the specification of API RP 2A-WSD was applied to compare the numerical simulation results with that from in-situ tests. It indicated that the simulation results were in good agreement with the measured data from in-situ tests at different load levels. The errors between the horizontal displacement of piles by the p-y curve method and in-situ tests increased with the increase of horizontal loads, which indicated that the p-y curve method was conservative. With the increase of horizontal loads, the horizontal deformation of piles gradually increased, the maximum bending moment points tended to move down, and the reverse bending point was about 14 m to16 m below the mud surface. The deformation and plastic zone of foundation soil gradually extended from the surface to the deep. Therefore, the model of pile-soil interfaces and the selection of geotechnical parameters were basically reasonable, and the rationality and effectiveness of finite element numerical simulations were verified.
  • loading
  • [1]
    王国粹, 王伟, 杨敏. 3.6 MW海上风机单桩基础设计与分析[J]. 岩土工程学报, 2011, 33(增刊2): 95-100.
    [2]
    武亚军, 卢晨阳, 李卫超, 等. 应用于海洋工程中水平受荷桩特性分析的修正p-y曲线模型[J]. 大连理工大学学报, 2018, 58(5): 511-518.
    [3]
    YAN S, ZHOU Q, LIU R, et al. Pit bearing capacity effect on status of soil plug during pile driving in ocean engineering[J]. China Ocean Engineering, 2011, 25(2): 295-304.
    [4]
    王卫, 闫俊义, 刘建平. 基于海上风电试桩数据的大直径桩p-y模型研究[J]. 岩土工程学报, 2021, 43(6): 1131-1138.
    [5]
    American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design: RP 2A-WSD [S]. Washington D.C.: American Petroleum Institute, 2010.
    [6]
    MCADAM R A, BYRNE B W, HOULSBY G T, et al. Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk[J]. Geotechnique, 2019, 70(11): 1-34.
    [7]
    CHOO Y W, KIM D. Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: centrifuge tests[J/OL]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(1) [2022-12-23]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373.
    [8]
    孙希, 黄维平. 基于实测数据的海上风电大直径桩p-y曲线研究[J]. 太阳能学报, 2016, 37(1): 216-221.
    [9]
    LI W, ZHU B, YANG M. Static response of monopile to lateral load in over-consolidated dense sand[J/OL]. Journal of Geotechnical & Geoenvironmental Engineering, 2017, 143(7) [2022-12-23]. https://doi.org/10.1061/(ASCE)GT.1943.
    [10]
    朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34(6): 1028-1037.
    [11]
    骆光杰, 周茂强, 张强, 等.基于FLAC3D的海上风电大直径钢管桩基础竖向承载力数值模拟研究[J]. 水力发电, 2021, 47(1): 117-121.
    [12]
    刘述丽, 易神州, 张昆. 海上大直径钢管桩水平向桩土界面参数试桩分析[J]. 水利水电技术, 2018, 49(5): 205-212.
    [13]
    明敏. 海上风电单桩基础水平承载力影响参数不确定性研究[D]. 武汉: 华中科技大学, 2019.
    [14]
    徐海滨, 吕鹏远, 杜修力. 基于现场试验的海上风电大直径单桩三维水平承载力研究[J]. 水利水电技术, 2020, 51(7): 154-160.
    [15]
    Det Norske Veritas (DNV). Design of offshore wind turbine structures: DNV-OS-J01[S]. Oslo: Det Norske Veritas, 2014.
    [16]
    DS Simulia. ABAQUS 2019 help documentation[Z]. Johnston:Dassault Systems Smulia Corp, 2019.
    [17]
    高大钊, 袁聚云. 土质学与土力学[M]. 3版.北京: 人民交通出版社, 2006.
    [18]
    杨敏, 赵锡宏. 分层土中的单桩分析法[J]. 同济大学学报, 1992, 20(4): 421-428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return