Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 5
May  2024
Turn off MathJax
Article Contents
WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
Citation: WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305

Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion

doi: 10.13204/j.gyjzG22112305
  • Received Date: 2022-11-23
    Available Online: 2024-06-22
  • The detection of hollowing and missing of building exterior walls is crucial to ensure the public safety around aging buildings in cities. The traditional artificial in-situ detection methods are time- and labor-consuming with safety risks. In addition, the detection results will also be affected by subjective factors such as professional experience and working status. The method of image acquisition by UAV and detection of building exterior wall defects by artificial intelligence model has become popular. However, the current research on defect detection only focuses on visible images or infrared images of a single modality, and only detect a certain defect without considering the mutual conversion between defects. To address this issue, this research combined the visible and infrared images of the building exterior wall, considered the image information from two modalities, and compared the UNet and Res-UNet models of different depths to identify the building exterior wall defects in the fused images. The experimental results showed that the Res-UNet model with a depth of 4 performed excellent on the hollowing and missing of the building exterior wall.
  • loading
  • [1]
    TALAB A M A, HUANG Z, XI F, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik, 2016, 127(3): 1030-1033.
    [2]
    周建. 公路隧道裂缝检测系统的研究与设计[D]. 西安:西安建筑科技大学, 2016.
    [3]
    ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analysis of edge-detection techniques for crack detection in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 255-263.
    [4]
    徐为驰, 张磊, 张创, 等. 基于图像的路面病害检测方法研究[J]. 公路交通科技(应用技术版), 2018, 14(2): 157-161.
    [5]
    沈照庆, 彭余华, 舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版), 2013, 38(8): 993-997.
    [6]
    瞿子易, 周文, 罗鑫, 等. 基于粒子群和支持向量机的裂缝识别[J]. 石油与天然气地质, 2009, 30(6): 786-792.
    [7]
    SALEEM M, GUTIERREZ H. Using artificial neural network and non-destructive test for crack detection in concrete surrounding the embedded steel reinforcement[J]. Structural Concrete, 2021, 22(5): 2849-2867.
    [8]
    YOO H S, KIM Y S. Development of a crack recognition algorithm from non-routed pavement images using artificial neural network and binary logistic regression[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1151-1162.
    [9]
    CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
    [10]
    王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867.
    [11]
    YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109.
    [12]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer, Cham: 2015: 234-241.
    [13]
    LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139.
    [14]
    CHENG J, XIONG W, CHEN W, et al. Pixel-level crack detection using U-Net[C]//TENCON 2018-2018 IEEE Region 10 Conference. 2018: 462-466.
    [15]
    戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007(1): 1-7.
    [16]
    CHUN P J, HAYASHI S. Development of a concrete floating and delamination detection system using infrared thermography[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2835-2844.
    [17]
    JANKǓ M, BŘEZINA I, GROšEK J. Use of infrared thermography to detect defects on concrete bridges[J]. Procedia Engineering, 2017, 190: 62-69.
    [18]
    FOX M, COLEY D, GOODHEW S, et al. Time-lapse thermography for building defect detection[J]. Energy and Buildings, 2015, 92: 95-106.
    [19]
    TANAKA H, TOTTORI S, NIHEI T. Detection of concrete spalling using active infrared thermography[J]. Quarterly Report of RTRI, 2006, 47(3): 138-144.
    [20]
    张淑仪. 超声红外热像技术及其在无损评价中的应用[J]. 应用声学, 2004(5): 1-6.
    [21]
    李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程, 2004(3): 227-230.
    [22]
    郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return