Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
Citation: WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305

Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion

doi: 10.13204/j.gyjzG22112305
  • Received Date: 2022-11-23
    Available Online: 2024-06-22
  • The detection of hollowing and missing of building exterior walls is crucial to ensure the public safety around aging buildings in cities. The traditional artificial in-situ detection methods are time- and labor-consuming with safety risks. In addition, the detection results will also be affected by subjective factors such as professional experience and working status. The method of image acquisition by UAV and detection of building exterior wall defects by artificial intelligence model has become popular. However, the current research on defect detection only focuses on visible images or infrared images of a single modality, and only detect a certain defect without considering the mutual conversion between defects. To address this issue, this research combined the visible and infrared images of the building exterior wall, considered the image information from two modalities, and compared the UNet and Res-UNet models of different depths to identify the building exterior wall defects in the fused images. The experimental results showed that the Res-UNet model with a depth of 4 performed excellent on the hollowing and missing of the building exterior wall.
  • [1]
    TALAB A M A, HUANG Z, XI F, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik, 2016, 127(3): 1030-1033.
    [2]
    周建. 公路隧道裂缝检测系统的研究与设计[D]. 西安:西安建筑科技大学, 2016.
    [3]
    ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analysis of edge-detection techniques for crack detection in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 255-263.
    [4]
    徐为驰, 张磊, 张创, 等. 基于图像的路面病害检测方法研究[J]. 公路交通科技(应用技术版), 2018, 14(2): 157-161.
    [5]
    沈照庆, 彭余华, 舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版), 2013, 38(8): 993-997.
    [6]
    瞿子易, 周文, 罗鑫, 等. 基于粒子群和支持向量机的裂缝识别[J]. 石油与天然气地质, 2009, 30(6): 786-792.
    [7]
    SALEEM M, GUTIERREZ H. Using artificial neural network and non-destructive test for crack detection in concrete surrounding the embedded steel reinforcement[J]. Structural Concrete, 2021, 22(5): 2849-2867.
    [8]
    YOO H S, KIM Y S. Development of a crack recognition algorithm from non-routed pavement images using artificial neural network and binary logistic regression[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1151-1162.
    [9]
    CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
    [10]
    王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867.
    [11]
    YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109.
    [12]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer, Cham: 2015: 234-241.
    [13]
    LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139.
    [14]
    CHENG J, XIONG W, CHEN W, et al. Pixel-level crack detection using U-Net[C]//TENCON 2018-2018 IEEE Region 10 Conference. 2018: 462-466.
    [15]
    戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007(1): 1-7.
    [16]
    CHUN P J, HAYASHI S. Development of a concrete floating and delamination detection system using infrared thermography[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2835-2844.
    [17]
    JANKǓ M, BŘEZINA I, GROšEK J. Use of infrared thermography to detect defects on concrete bridges[J]. Procedia Engineering, 2017, 190: 62-69.
    [18]
    FOX M, COLEY D, GOODHEW S, et al. Time-lapse thermography for building defect detection[J]. Energy and Buildings, 2015, 92: 95-106.
    [19]
    TANAKA H, TOTTORI S, NIHEI T. Detection of concrete spalling using active infrared thermography[J]. Quarterly Report of RTRI, 2006, 47(3): 138-144.
    [20]
    张淑仪. 超声红外热像技术及其在无损评价中的应用[J]. 应用声学, 2004(5): 1-6.
    [21]
    李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程, 2004(3): 227-230.
    [22]
    郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66.
  • Relative Articles

    [1]GAO Yuxuan, SUN Lijuan, DING Hongxin, XIONG Ziqi. A Keywords Extraction Method for Public Safety Domain TextsBased on Deep Reinforcement Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 155-160. doi: 10.3724/j.gyjzG23121201
    [2]YU Caizhao, WANG Haitao, SONG Tianshuai, ZHENG Jiarong, LIU Zhansheng, YANG Kai, LIU Junjie. A Digital Delivery Method for Large Underground Spaces Integrating Multi-source and Multi-dimensional Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 16-24. doi: 10.3724/j.gyjzG23111320
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]JIN Nan, WU Yongjingbang, SHI Zhongqi, YUE Qingrui, ZHENG Zexing. Research on Methods for Detection and Localization of Color Steel Tile Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 58-64. doi: 10.3724/j.gyjzG23120810
    [5]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [6]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [7]LI Chunhua, HE Sheng, XIONG Anping. Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 175-179. doi: 10.13204/j.gyjzG21083004
    [8]FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
    [9]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [10]YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
    [13]Chen Zhenfu, Liu Jun, Gan Yuanchu, You Meng, Sun Bing, Wang Zhongyou. DAMAGE IDENTIFICATION OF PRESTRESSED CONCRETE BEAMS BASED ON MODAL STIFFNESS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 62-66. doi: 10.13204/j.gyjz201406015
    [14]Gan Lin, Li Hailong. COMPARATIVE STUDY ON MODAL PARAMETER IDENTIFICATION TIME DOMAIN METHODS FOR FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 29-33,23. doi: 10.13204/j.gyjz201308006
    [15]Wang Wanping, Weng Guangyuan, Shen Wei. STUDY ON DATA FUSION METHOD FOR TRUSS STRUCTURE DAMAGE IDENTIFICATION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 129-132. doi: 10.13204/j.gyjz201212028
    [16]Xia Jingchan, Duan Jingmin, Zhao Hongbo, Yu Xiaoxun. THE TRUSS STRUCTURE DAMAGE IDENTIFICATION RESEARCH BASED ON THE MODAL PARAMETERS AND SUPPORT VECTOR MACHINE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 16-20,37. doi: 10.13204/j.gyjz201107004
    [17]Xu Shidai, Wang Fengquan. MODE PARAMETER IDENTIFICATION OF ENGINEERING STRUCTURE BASED ON ARMA MODEL[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 20-22. doi: 10.13204/j.gyjz200705005
    [18]Li Xue. PLANNING AND DESIGN OF INDUSTRIAL FACTORIES IN SPECIAL TOPOGRAPHICAL CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 28-30,49. doi: 10.13204/j.gyjz200612008
    [19]Wang Gang, Yao Qianfeng. STUDY ON MODAL IDENTIFICATION OF FRAME STRUCTURE UNDER AMBIENT EXCITATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 45-47. doi: 10.13204/j.gyjz200412012
  • Cited by

    Periodical cited type(3)

    1. 闵杰,杨新聪,金楠,汤至颂,王凤来. 基于图像语义分割的冰雹致建筑外窗受损量化评估方法. 自然灾害学报. 2025(01): 39-48 .
    2. 雷斌,苏江,陈铭慧,谭毅,黄政开,杨天玲,韦佳鑫,张梓轩. 一种新型高层建筑外立面瓷砖检测装置的设计. 机电工程技术. 2024(08): 186-190 .
    3. 王海龙,王悦,王万金,向创. 高清红外及高频雷达技术在建筑外墙渗漏水无损检测中的应用研究. 施工技术(中英文). 2024(24): 128-133 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 80.2 %META: 80.2 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 46.4 %其他: 46.4 %上海: 1.9 %上海: 1.9 %北京: 1.4 %北京: 1.4 %十堰: 0.5 %十堰: 0.5 %南京: 1.0 %南京: 1.0 %南通: 0.5 %南通: 0.5 %合肥: 1.0 %合肥: 1.0 %天津: 1.0 %天津: 1.0 %安康: 0.5 %安康: 0.5 %宣城: 1.0 %宣城: 1.0 %廊坊: 1.0 %廊坊: 1.0 %张家口: 2.4 %张家口: 2.4 %成都: 1.9 %成都: 1.9 %扬州: 1.4 %扬州: 1.4 %昆明: 1.0 %昆明: 1.0 %杭州: 1.9 %杭州: 1.9 %泰州: 0.5 %泰州: 0.5 %济南: 0.5 %济南: 0.5 %温州: 1.4 %温州: 1.4 %漯河: 2.9 %漯河: 2.9 %石家庄: 1.0 %石家庄: 1.0 %芒廷维尤: 15.9 %芒廷维尤: 15.9 %芝加哥: 2.9 %芝加哥: 2.9 %西宁: 1.0 %西宁: 1.0 %西安: 1.9 %西安: 1.9 %运城: 2.4 %运城: 2.4 %酒泉: 0.5 %酒泉: 0.5 %长沙: 1.9 %长沙: 1.9 %香港: 1.9 %香港: 1.9 %黄冈: 0.5 %黄冈: 0.5 %其他上海北京十堰南京南通合肥天津安康宣城廊坊张家口成都扬州昆明杭州泰州济南温州漯河石家庄芒廷维尤芝加哥西宁西安运城酒泉长沙香港黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (165) PDF downloads(6) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return