Citation: | WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305 |
[1] |
TALAB A M A, HUANG Z, XI F, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik, 2016, 127(3): 1030-1033.
|
[2] |
周建. 公路隧道裂缝检测系统的研究与设计[D]. 西安:西安建筑科技大学, 2016.
|
[3] |
ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analysis of edge-detection techniques for crack detection in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 255-263.
|
[4] |
徐为驰, 张磊, 张创, 等. 基于图像的路面病害检测方法研究[J]. 公路交通科技(应用技术版), 2018, 14(2): 157-161.
|
[5] |
沈照庆, 彭余华, 舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版), 2013, 38(8): 993-997.
|
[6] |
瞿子易, 周文, 罗鑫, 等. 基于粒子群和支持向量机的裂缝识别[J]. 石油与天然气地质, 2009, 30(6): 786-792.
|
[7] |
SALEEM M, GUTIERREZ H. Using artificial neural network and non-destructive test for crack detection in concrete surrounding the embedded steel reinforcement[J]. Structural Concrete, 2021, 22(5): 2849-2867.
|
[8] |
YOO H S, KIM Y S. Development of a crack recognition algorithm from non-routed pavement images using artificial neural network and binary logistic regression[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1151-1162.
|
[9] |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
|
[10] |
王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867.
|
[11] |
YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109.
|
[12] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer, Cham: 2015: 234-241.
|
[13] |
LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139.
|
[14] |
CHENG J, XIONG W, CHEN W, et al. Pixel-level crack detection using U-Net[C]//TENCON 2018-2018 IEEE Region 10 Conference. 2018: 462-466.
|
[15] |
戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007(1): 1-7.
|
[16] |
CHUN P J, HAYASHI S. Development of a concrete floating and delamination detection system using infrared thermography[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2835-2844.
|
[17] |
JANKǓ M, BŘEZINA I, GROšEK J. Use of infrared thermography to detect defects on concrete bridges[J]. Procedia Engineering, 2017, 190: 62-69.
|
[18] |
FOX M, COLEY D, GOODHEW S, et al. Time-lapse thermography for building defect detection[J]. Energy and Buildings, 2015, 92: 95-106.
|
[19] |
TANAKA H, TOTTORI S, NIHEI T. Detection of concrete spalling using active infrared thermography[J]. Quarterly Report of RTRI, 2006, 47(3): 138-144.
|
[20] |
张淑仪. 超声红外热像技术及其在无损评价中的应用[J]. 应用声学, 2004(5): 1-6.
|
[21] |
李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程, 2004(3): 227-230.
|
[22] |
郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66.
|