Citation: | HOU Yufei, ZHENG Chuanlei, ZHAO Yadi, JIN Baohong. Effect of Sulfate Freeze-Thaw on Mechanical Properties of Self-Compacting Recycled Coarse Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 189-198,6. doi: 10.13204/j.gyjzG22111001 |
[1] |
于婧, 雷实满, 梁兴文, 等. 一种新型混杂钢纤维增强自密实混凝土的配合比设计方法[J]. 建筑材料学报, 2017, 20(4):611-615
,629.
|
[2] |
JIHONG B, YUN Z, JIAN G, et al. Three-dimensional modeling of the distribution and orientation of steel fibers during the flow of self-compacting concrete[J]. Structural Concrete, 2019, 20(5):1-12.
|
[3] |
ZHENG C, LI S, HOU Y, et al. Frost resistance of fiber-reinforced self-compacting recycled concrete[J]. Reviews on Advanced Materials Science, 2022, 61(1):711-725.
|
[4] |
XIAO Q, LI Q, CAO Z, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials, 2019, 200:344-355.
|
[5] |
XIAO Q, CAO Z, GUAN X, et al. Damage to recycled concrete with different aggregate substitution rates from the coupled action of freeze-thaw cycles and sulfate attack[J]. Construction and Building Materials, 2019, 221:74-83.
|
[6] |
姜磊, 牛荻涛. 硫酸盐与冻融复合作用下混凝土劣化规律[J]. 中南大学学报(自然科学版), 2016, 47(9):3208-3216.
|
[7] |
慕儒, 缪昌文, 刘加平, 等. 氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理[J]. 硅酸盐学报, 2001(6):523-529.
|
[8] |
王鲜星, 刘元珍, 赵雨, 等. 再生保温混凝土抗冻性能的细观研究[J]. 硅酸盐通报, 2021, 40(11):3601-3607.
|
[9] |
孙晓红, 胡大琳, 张雷雷, 等. 考虑冻融和应力影响的混凝土构件碳化试验研究[J]. 硅酸盐通报, 2020, 39(4):1115-1125.
|
[10] |
MILETIC S, ILIC M, OTOVIC S, et al. Phase composition changes due to ammonium-sulphate:attack on portland and portland fly ash cements[J]. Construction and Building Materials, 1999, 13(3):117-127.
|
[11] |
金宝宏, 郑传磊, 侯玉飞, 等. 聚丙烯-钢纤维/再生粗骨料混凝土力学性能正交试验研究[J]. 功能材料, 2021, 52(12):12175-12183.
|
[12] |
郭樟根, 陈晨, 范秉杰, 等. 再生粗细骨料混凝土基本力学性能试验研究[J]. 建筑结构学报, 2016, 37(增刊2):94-102.
|
[13] |
孙呈凯, 金宝宏, 李家俊, 等. PVA纤维再生混凝土力学性能正交试验研究[J]. 广西大学学报(自然科学版), 2018, 43(4):1569-1575.
|
[14] |
JIA P, LI L, ZHOU J, et al. Performance evolution of recycled aggregate concrete under the coupled effect of freeze-thaw cycles and sulfate attack[J/OL]. Applied Sciences, 2022, 12(14)[2022-11-10].https://doi.org/10.3390/app12146950.
|
[15] |
LIU F, YOU Z, YANG X, et al. Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation[J]. Construction and Building Materials, 2018, 181:369-380.
|
[16] |
中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010.
|
[17] |
American Concrete Institute (ACI). Building code requirements for structural concrete and commentary:ACI318-95[S]. Detroit:ACI,1995.
|
[18] |
郭樟根, 陈晨, 范秉杰, 等. 再生粗细骨料混凝土基本力学性能试验研究[J]. 建筑结构学报, 2016, 37(增刊2):94-102.
|
[19] |
王晋浩, 郑传磊, 金宝宏, 等. 粉煤灰/不同骨料对纤维自密实再生混凝土力学性能影响[J]. 功能材料, 2022, 53(9):9209-9218.
|
[20] |
郑传磊, 王晋浩, 金宝宏, 等. 多因素对自密实混凝土力学性能发展趋势的影响[J]. 功能材料, 2021, 52(12):12022-12029
,12035.
|
[21] |
李旭平. 再生混凝土基本力学性能研究(I):单轴受压性能[J]. 建筑材料学报, 2007(5):598-603.
|
[22] |
向星赟, 赵人达, 李福海, 等. 自密实再生混凝土的基本力学性能试验研究[J]. 西南交通大学学报, 2019, 54(2):359-365.
|
[23] |
陈宗平, 徐金俊, 郑华海, 等. 再生混凝土基本力学性能试验及应力应变本构关系[J]. 建筑材料学报, 2013, 16(1):24-32.
|
[24] |
胡波, 柳炳康, 王成刚. 再生混凝土基本力学性能研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(1):87-90.
|
[25] |
王晨霞, 张铎, 曹芙波, 等. 冻融循环后再生混凝土的力学性能及损伤模型研究[J]. 工业建筑, 2022, 52(5):199-207.
|
[26] |
祝斯月, 陈拴发, 秦先涛, 等. 基于灰关联熵分析法的高粘改性沥青关键指标[J]. 材料科学与工程学报, 2014, 32(6):863-867.
|