Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Zhi, LI Baipeng, PENG Yang, WANG Rui. Experimental Research on Mechanical Properties of Connections Between Steel Plates and Unidirectional and Multidirectional Laminated Engineered Bamboo[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 127-134,211. doi: 10.13204/j.gyjzG22110502
Citation: LI Zhi, LI Baipeng, PENG Yang, WANG Rui. Experimental Research on Mechanical Properties of Connections Between Steel Plates and Unidirectional and Multidirectional Laminated Engineered Bamboo[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 127-134,211. doi: 10.13204/j.gyjzG22110502

Experimental Research on Mechanical Properties of Connections Between Steel Plates and Unidirectional and Multidirectional Laminated Engineered Bamboo

doi: 10.13204/j.gyjzG22110502
  • Received Date: 2022-11-05
    Available Online: 2023-10-17
  • The mechanical properties of bolts and hollow rivet connectors in engineering bamboo structures were studied to provide theoretical and technical support for applying the above connectors in glubam designs. The nominal yield strength and a plastic bending moment of grade 4.8 and 8.8 bolts, hollow rivets of different diameters were tested by using the three-point bending method. The semi-hole method tested the embedment strength of different types of bamboo in the main-fiber and the less-fiber directions. Monotonic and hysteretic tests tested the bearing capacity, stiffness, and ductility of the bamboo-steel-bamboo connections. The bearing capacity values measured by the test were compared with the bearing capacity estimation values through corresponding failure modes, and the appropriate estimation formula was determined. The experimental results showed that bamboo was a brittle engineering material with pronounced anisotropy. The yield failure of steel and the shear failure of bamboo were the main failure modes of bamboo-steel-bamboo connections studied herein. Through proper connector design and cross-laminated strips, the above connectors could form a ductile failure mode dominated by steel yielding. Through the corresponding yield model, the bearing capacity of the bamboo-steel-bamboo connection could be estimated.
  • [1]
    XIAO Y, SHAN B, CHEN G, et al. Development of a new type of glulam-gluBam[C]//XIAO Y, et al. edited. Modern Bamboo Structures. London:CRC Press, 2008:41-47.
    [2]
    肖岩,杨瑞珍,单波,等. 结构用胶合竹力学性能试验研究[J]. 建筑结构学报,2012,33(11):150-157.
    [3]
    LI Z, HE X Z, CAI Z M, et al. Mechanical properties of engineered bamboo boards for glubam structures[J/OL]. Journal of Materials in Civil Engineering, 2021, 33(5)[2022-11-05]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003657.
    [4]
    LI Z, WANG C, WANG R. Application of screw reinforcement in the slotted-in bamboo-steel-bamboo connections[J]. Structures, 2021, 33:4112-4123.
    [5]
    LI Z, LI T, WANG C, et al. Experimental study of an unsymmetrical prefabricated hybrid steel-bamboo roof truss[J/OL]. Engineering Structures, 2019, 201[2022-11-05].https://doi.org/10.1016/j.engstruct.2019.109781.
    [6]
    祝恩淳,潘景龙.木结构设计中的问题探讨[M].北京:中国建筑工业出版社,2017.
    [7]
    MICHAEL D, KARIN de B, JOSEF E. Experiments on dowel-type timber connections[J]. Engineering Structures, 2013, 47(1):67-80.
    [8]
    IAN S, GREG F, MINH N, et al. Capacities of dowel-type fastener joints in Australian Pine[J]. Journal of Materials in Civil Engineering, 2005, 17(6):664-675.
    [9]
    LI Z, XIAO Y, WANG R, et al. Studies of nail connectors used in wood frame shear walls with ply-bamboo sheathing panels[J/OL]. Journal of Materials in Civil engineering, 2015, 27(7)[2022-11-05].https://doi.org/10.1061/(ASCE)MT.1943-5533.0001167.
    [10]
    XU Y H, DONG Z F, JIA C, et al. Bamboo nail:a novel connector for timber assemblies[J]. Journal of Renewable Materials, 2021, 9(9):1609-1620.
    [11]
    徐德良,刘伟庆,杨会峰,等. 木材-钢填板螺栓连接的承载能力试验研究[J]. 南京工业大学学报(自然科学版),2009,31(1):87-91.
    [12]
    徐德良,刘伟庆,倪庚东. 木材-钢夹板螺栓连接的承载能力试验研究[J]. 江苏建筑,2009(3):18-20.
    [13]
    BONA M, IAN S, ASIZ A. Wood and engineered wood product connections using small steel tube fasteners:an experimental study[J]. Journal of the Institute of Wood Science, 2013, 18(2):59-67.
    [14]
    AMADA S, MUNEKATA T, NAGASE Y, et al. The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials[J]. Journal of Composite Materials, 1996, 30(7):800-819.
    [15]
    ASTM International. Standard test method for evaluating dowel-bearing strength of wood and wood-based products:ASTM D5764-97a[S]. West Conshohocken, PA:ASTM International, 2013.
    [16]
    中国国家标准化管理委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国标准出版社,2011.
    [17]
    中国国家标准化管理委员会. 碳素结构钢:GB/T 700-2006[S]. 北京:中国标准出版社,2006.
    [18]
    ASTM International. Standard test method for determining bending yield moment of nails:ASTM F1575-17[S]. West Consho-hocken, PA:ASTM International, 2017.
    [19]
    沈祖炎,陈以一,陈扬骥,等. 钢结构基本原理[M].第3版. 北京:中国建筑工业出版社,2018.
    [20]
    ASTM International. Standard test method for single-bolt connections in wood and wood-based products:ASTM D5652-15[S]. West Conshohocken, PA:ASTM International, 2015.
    [21]
    KRAWINKLER H, PARISI F, IBARRA L, et al. Development of a testing protocol for wood frame structures:No. W-02[R]. Richmond CA:CUREE, 2001.
    [22]
    冯鹏,强翰霖,叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3):36-46.
    [23]
    中华人民共和国住房和城乡建设部. 木结构设计标准:GB 50005-2017[S]. 北京:中国建筑工业出版社,2017.
    [24]
    European Committee for Standardization. Eurocode 5:design of timber structures part 1-1:general-common rules and rules for building:BS EN 1995-1-1[S]. Brussels:European Committee for Standardization, 2004.
    [25]
    American Forest & Paper Association. National design specification for wood construction:ANSI/AF&PA NDS-2012[S]. Washington DC:American National Standards Institute, 2012.
    [26]
    JOHANSEN K W. Theory of timber connectors[J]. International Association of Bridge and Structural Engineering, 1949, 9:249-262.
    [27]
    XU B H, TAAZOUNT M, BOUCHAIR A, et al. Numerical 3D finite element modelling and experimental tests for dowel-type timber joints[J]. Construction & Building Materials, 2009, 23(9):3043-3052.
    [28]
    VOLKERSEN O. Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten[J]. Luftfartforschung, 1938, 35:4-47.
    [29]
    JORISSEN A. Double shear timber connections with dowel type fasteners[J]. Heron, 1999, 44(3):163-186.
    [30]
    SCHMID M, FRANSON R, BLASS H J. Effect of distances, spacing, and number of dowels in a row and the load-carrying capacity of connections with dowels failing by splitting[C]//CIB-W18 Timber Structures:A Review of Meetings 1-43. Kyoto:Danish Timber Information, 2002.
    [31]
    JENSEN J L, QUENNEVILLE P. Experimental investigations on row shear and splitting in bolted connections[J]. Construction & Building Materials, 2011, 25(5):2420-2425.
    [32]
    YURRITA M, CABRERO J M. New design model for splitting in timber connections with one row of fasteners loaded in the parallel-to-grain direction[J/OL]. Engineering Structures, 2020, 223[2022-11-05]. https://doi.org/10.1016/j.engstruct.2020.111155.
    [33]
    ROBERT J, GERHARD F, JOCHEN K. Assessment of the failure behaviour and reliability of timber connections with multiple dowel-type fasteners[J]. Engineering Structures, 2018, 172:76-84.
    [34]
    LI Z, ZHANG J, WANG R. Evaluation of the in-plane shear properties of bamboo strips (Phyllostachys edulis) with the Iosipescu test and theoretical models based on composite mechanics[J]. Holzforschung, 2022, 76(8):765-780.
    [35]
    OTTENHAUS L M, LI M, SMITH T. Analytical derivation and experimental verification of overstrength factors of dowel-type timber connections for capacity design[J]. Journal of Earthquake Engineering, 2020, 26(1):1-15.
    [36]
    OTTENHAUS L M, LI M, SMITH T, et al. Overstrength of dowelled CLT connections under monotonic and cyclic loading[J]. Bulletin of Earthquake Engineering, 2018, 16:753-773.
  • Relative Articles

    [1]ZHU Lu, GAO Bo, CAO Yanguang, LI Zhaodong. Effects of Tempering Treatment on the Microstructure and Mechanical Properties of High-Strength Weathering Bridge Steel[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 1-9. doi: 10.3724/j.gyjzG24042402
    [2]ZHANG Zeyu, ZENG Lijing, WANG Yuedong, HOU Zhaoxin, LIU Xuechun, ZHANG Ailin, LI Weinan. Research on Mechanical Properties of Prefabricated Z-Shaped Steel Beam-to-Column Connections[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 62-69. doi: 10.3724/j.gyjzG24022007
    [3]LAN Tao, KANG Lei, LI Ran, LI Zexu, QIN Guangchong, ZHANG Boya. Research on Mechanical Properties and Constitutive Model of Q355GNH Weathering Steel After Corrosion Damage[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 49-57. doi: 10.3724/j.gyjzG24041801
    [4]ZHANG Jintao, TAO Hongbin, BAI Ligeng, XIN Kangjian. Experimental Research on Bearing Capacity of Fiber Cement Board Bottom Formworks and Fastenters of Steel Bars Truss Decks[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 110-117. doi: 10.3724/j.gyjzG23030201
    [5]WU Jiaxin, WANG Yu, WU Lei. Experimental Research on Mechanical Properties of In-Situ Printed Concrete Slabs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 61-67,93. doi: 10.13204/j.gyjzG22092808
    [6]HUA Jianmin, HU Guosong, WANG Fei, XUE Xuanyi, WANG Neng. Mechanical Properties of Stainless-Clad Bimetallic Steel Bars with Different Corrosion Forms[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 179-186. doi: 10.13204/j.gyjzG22112002
    [7]ZHANG Yumin, XU Zhenhua, LI Jinghui, FENG Xuanming, WANG Yuliang. Research on Mechanical Properties of Stainless Steel Connectors of Precast Concrete Sandwich Walls[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 38-42. doi: 10.13204/j.gyjzG22031303
    [8]YAO Zhongyong. Research on Mix Proportion of ECC with Low Drying Shrinkage[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 171-176,215. doi: 10.13204/j.gyjzG20110912
    [9]WANG Yuhao, LIU Degui, WANG Ning, MA Jingjing. Experimental Research on Mechanical Properties of Prestressed Steel-timber Circular Column Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 39-46. doi: 10.13204/j.gyjzG20061012
    [10]WANG Chenxia, ZHANG Duo, CAO Fubo, WU Yaxuan, YE Chang, LI Lan. Research on Mechanical Properties and Damage of Recycled Concrete After Being Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 199-207. doi: 10.13204/j.gyjzG20091704
    [11]NIE Yuhan, WEI Yang, YANG Bo, CHEN Si, ZHAO Kang. EXPERIMENTAL RESEARCH ON SHEAR RESISTANCE OF STEEL PLATE CONNECTORS FOR BAMBOO-CONCRETE COMPOSITE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 111-116. doi: 10.13204/j.gyjzG20072604
    [12]ZHAO Wenzhan, GUO Jianyun. STUDY ON MECHANICAL PROPERTIES OF JOINTS CONNECTING H-SHAPED STEEL BEAM AND RECTANGULAR STEEL TUBE COLUMN WITH A NEW-TYPE DIAPHRAGM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 87-92,172. doi: 10.13204/j.gyjzG20012901
    [13]Li Jie, Deng Linqiang, Sang Dan, Wang Diping. EXPERIMENTAL RESEARCH ON FLEXURAL BEHAVIOUR OF LAMINATED STEEL BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 115-118. doi: 10.13204/j.gyjz201505025
    [14]Pang Rui, Liang Shuting, Zhu Xiaojun. STATE-OF-THE-ART OF OVERSEAS RESEARCH OF PRECAST DOUBLE-TEE FLOORS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 121-126. doi: 10.13204/j.gyjz201103024
    [15]Zhao Xianming, Wang Jianhui, Liu Xianghua, Wu Di. STUDY ON THE RELATIONS OF CHEMICAL COMPOSITION,MICROSTRUCTURE AND PROPERTIES OF FINE GRAIN RIBBED BAR[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 1-4. doi: 10.13204/j.gyjz200911001
    [16]Li XuPing. LONG-TERM MECHANICAL PROPERTIES OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(10): 80-84. doi: 10.13204/j.gyjz20081020
    [17]Hu Shulan. ANALYSIS OF MECHANICAL PROPERTY OF SHORT-PIER SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 67-69. doi: 10.13204/j.gyjz200809020
    [18]Wang Ping, Xiao Jianzhuan, Chen Ruisheng, Zheng Xuebin. EXPERIMENTAL STUDY ON EFFECT OF POLYPROPYLENE FIBER ON MECHANICAL PROPERTY OF HIGH PERFORMANCE CONCRETE AFTER HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 67-69,77. doi: 10.13204/j.gyjz200511020
    [19]Xu Guigen, Nie Jianguo, . EXPERIMENTAL STUDY AND THEORETICAL ANALYSIS ON THE STEEL MEMBERS JOINTED BY CEMENTATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 86-89. doi: 10.13204/j.gyjz200509024
    [20]Fang Jianbang. THE CONTROLLING AND TREATING TECHNOLOGY OF CRACKS IN MASONRY BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 72-74. doi: 10.13204/j.gyjz200411019
  • Cited by

    Periodical cited type(2)

    1. 张建辉,陈磊,王滔,余珊. “以竹代塑”产业规划编制要点浅析. 林产工业. 2024(08): 76-81+92 .
    2. 刘纯,王倩,盘丁铨,陈仙阁,李智. 建筑信息模型平台上轻型结构的设计、施工与全寿命管理策略研究. 材料导报. 2024(S2): 460-466 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 85.2 %META: 85.2 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.8 %其他: 16.8 %北京: 0.7 %北京: 0.7 %唐山: 0.7 %唐山: 0.7 %天津: 0.7 %天津: 0.7 %安康: 1.4 %安康: 1.4 %宜春: 0.7 %宜春: 0.7 %常德: 3.5 %常德: 3.5 %张家口: 2.8 %张家口: 2.8 %成都: 0.7 %成都: 0.7 %扬州: 0.7 %扬州: 0.7 %新乡: 0.7 %新乡: 0.7 %无锡: 1.4 %无锡: 1.4 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %杭州: 4.2 %杭州: 4.2 %漯河: 1.4 %漯河: 1.4 %芒廷维尤: 36.4 %芒廷维尤: 36.4 %芝加哥: 0.7 %芝加哥: 0.7 %西宁: 18.9 %西宁: 18.9 %西安: 1.4 %西安: 1.4 %运城: 4.2 %运城: 4.2 %郑州: 0.7 %郑州: 0.7 %其他北京唐山天津安康宜春常德张家口成都扬州新乡无锡昆明晋城杭州漯河芒廷维尤芝加哥西宁西安运城郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(2) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return