Citation: | WU Zhongtan. Risk Analysis of Construction with Tunnel Boring Machines Passing Under Existing Tunnels Based on Gaussian Copula Bayesian Network Model[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 55-64. doi: 10.13204/j.gyjzG22103112 |
[1] |
ZHAN G D M, HUANG Z K, LI Z L, et al. Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath[J]. Computers and Geotechnics, 2019, 108:197-211.
|
[2] |
陶宇,梁伟桥,方五军.盾构下穿近邻既有隧道稳定性研究[J].工业建筑, 2020, 50(4):66-70.
|
[3] |
YIN M, JIANG H, JIANG Y, et al. Effect of the excavation clearance of an under-crossing shield tunnel on existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 78:245-258.
|
[4] |
黄向阳,章邦超,梁基冠,等.上软下硬地层盾构下穿施工中既有隧道应力和变形研究[J].建筑安全, 2022, 37(7):4-8.
|
[5] |
MA S K, SHAO Y, LIU Y, et al. Responses of pipeline to side-by-side twin tunnelling at different depths:3D centrifuge tests and numerical modelling[J]. Tunnelling and Underground Space Technology, 2017, 66:157-173.
|
[6] |
阿卜杜拉,雷春明,田雨,等.盾构下穿对既有隧道影响的模型试验研究[J].地下空间与工程学报, 2020, 16(增刊2):540-544.
|
[7] |
ZHOU Z, GOH Y M, LI Q. Overview and analysis of safety management studies in the construction industry[J]. Safety Science, 2015, 72:337-386.
|
[8] |
曾铁梅,刘茜,冯宗宝,等.基于PCBN模型盾构下穿既有隧道施工安全风险评价[J].隧道建设(中英文), 2021, 41(10):1692-1699.
|
[9] |
PAN Y, ZHANG L, KOH J, et al. An adaptive decision making method with copula Bayesian network for location selection[J]. Information Sciences, 2021(544):56-77.
|
[10] |
王双成,高瑞,杜瑞杰.基于高斯Copula的约束贝叶斯网络分类器研究[J].计算机学报, 2016, 39(8):1612-1636.
|
[11] |
JUN H B, KIM D. A Bayesian network-based approach for fault analysis[J]. Expert Systems with Applications, 2017, 81:332-348.
|
[12] |
周圆媛,何一韬,赵璟璐,等.基于贝叶斯网络的岩溶区盾构隧道施工安全性分析[J].现代隧道技术, 2018, 55(增刊2):764-771.
|
[13] |
任超,吴伟,黄征凯,等.基于AIC准则的RBF神经网络在GPS高程拟合中的应用[J].测绘科学, 2013, 38(2):77-79.
|
[14] |
刘文,刘文黎,翟世鸿.基于Copula相依模型的地铁结构安全可靠性分析[J].中国安全科学学报, 2019, 29(8):164-171.
|
[15] |
勾红叶,冷丹,王涵玉,等.基于混合Copula函数的风雨联合概率分布模型[J].中国公路学报, 2021, 34(2):309-316.
|
[16] |
GUO X, JI J, KHAN F, et al. Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident[J]. Process Safety and Environmental Protection, 2021(149):817-846.
|
[17] |
花玲玲,郑伟.基于复杂网络理论的铁路事故致因分析[J].中国安全科学学报, 2019, 29(增刊1):114-122.
|
[18] |
刘文黎,吴贤国,张文静,等.地铁健康监测PCBN模型的参数相关性分析[J].土木与环境工程学报(中英文), 2019, 41(2):45-52.
|
[19] |
BALRAM D, LIAN K Y, SEBASTIAN N. Air quality warning system based on a localized PM2.5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection[J/OL]. Ecotoxicology and Environmental Safety, 2019, 182[2022-10-31]. https://doi.org/10.1016/j.ecoenv.2019.109386.
|
[20] |
樊学平,杨光红,肖青凯,等.大跨桥梁主梁失效概率分析的最优R-Vine Copula[J].吉林大学学报(工学版), 2021, 51(4):1296-1305.
|
[21] |
LIU W, WU X, ZHANG L, et al. Sensitivity analysis of structural health risk in operational tunnels[J]. Automation in Construction, 2018, 94:135-153.
|
[22] |
LIANG R, XIA T, HUANG M, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017(81):167-187.
|
[23] |
LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019(89):78-90.
|
[24] |
LIU X, FANG Q, ZHANG D, et al. Behaviour of existing tunnel due to new tunnel construction below[J]. Computers and Geotechnics, 2019, 110:71-81.
|