Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
HU Lili, FENG Peng, ZHUANG Jiangbo. Design Method of Prestressed CFRP-Reinforced Purlins in Reconstruction of Photovoltaic System for Light-Gauge Steel Structure Roofs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 138-148. doi: 10.13204/j.gyjzG22102603
Citation: HU Lili, FENG Peng, ZHUANG Jiangbo. Design Method of Prestressed CFRP-Reinforced Purlins in Reconstruction of Photovoltaic System for Light-Gauge Steel Structure Roofs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 138-148. doi: 10.13204/j.gyjzG22102603

Design Method of Prestressed CFRP-Reinforced Purlins in Reconstruction of Photovoltaic System for Light-Gauge Steel Structure Roofs

doi: 10.13204/j.gyjzG22102603
  • Received Date: 2022-10-26
    Available Online: 2023-11-08
  • Based on the engineering background of reconstruction photovoltaic systems on the light-gauge steel structure roofs of many existing industrial buildings, two categories of reinforcing techniques using prestressed CFRP laminates are applied to reinforce the purlins of such structures. The former uses hydraulic jack to prestress the CFRP laminate, which is close to the lower flange of steel purlin; and the latter uses a prestressing chair at the midspan of the steel purlin to prestress the CFRP laminate, thus the CFRP laminate is far away from the lower flange of the steel purlin and forms a triangular shape. Firstly, the reinforcement mechanisms of the two reinforcing techniques were analyzed. Secondly, based on current codes in China, the direct strength method was applied to form a calculation method of the bearing capacity and the deformation of the reinforced steel purlin, which considered the correlation between the local buckling and strength failure of the reinforced steel purlin and the increase of prestress caused by the deformation of CFRP laminate. The calculation results had good accuracy and the influencing tendencies of the parameters were obtained. It was found that using a large stiffness of CFRP, a large supporting length, and a large prestress value led to a high reinforcing efficiency. Based on this, considering the practical limitations of maximum prestress in the reinforcing stage, CFRP laminate strength and maximum deformation of the reinforced steel purlin, a design method of the reinforced steel purlin was established, and design examples of such steel purlins were given for flexural strength or local buckling enhancement. Through the comparisons of design examples, different applicable conditions of the two categories of reinforcing techniques were obtained. The technique of using prestressed CFRP with prestressing chair was easier to achieve a significant increase in flexural capacity and stiffness. This paper provided references of reinforcing steel purlins with prestressed CFRPs in real engineering.
  • loading
  • [1]
    MENG X M, ZHANG D B, FENG P, et al. Review on mechanical behavior of solar cells for building integrated photovoltaics[J]. Sustainable Structures,2021,1(2):1-19.
    [2]
    祝敬国. 光伏发电示范新能源:首都博物馆新馆300 kW太阳能光伏系统工程设计[J]. 建设科技, 2005(5):20-21.
    [3]
    吴越. 新能源崛起光伏建筑一体化加速走来[N]. 中国建材报,2022-01-24(001).
    [4]
    中华人民共和国住房和城乡建设部. 对十三届全国人大五次会议第2254号建议的答复[EB/OL]. (2022-06-21

    )[2022-09-19] https://www.miit.gov.cn/zwgk/jytafwgk/art/2022/art_c2206761ca1248848969014a6aa3510b.html.
    [5]
    中华人民共和国住房和城乡建设部. 钢结构加固设计标准:GB 51367-2019[S]. 北京:中国建筑工业出版社,2019.
    [6]
    TALL L. The reinforcement of steel columns[J]. Engineering Journal, 1989,26(1):33-37.
    [7]
    MARZOUK H, MOHAN S. Strengthening of wide-flange columns under load[J]. Canadian Journal of Civil Engineering, 1990,17(5):835-843.
    [8]
    王元清, 祝瑞祥, 戴国欣, 等. 初始负载下焊接加固工字形截面钢柱受力性能试验研究[J]. 建筑结构学报, 2014,35(7):78-86.
    [9]
    卢亦焱,陈莉,高作平, 等. 外粘钢板加固钢管柱承载力试验研究[J]. 建筑结构, 2002(4):54-56.
    [10]
    MAQUOI R, SKALOUD M. Stability of plates and plated structures:general report[J]. Journal of Constructional Steel Research, 2000,55(1/2/3):45-68.
    [11]
    ZHAO X L. FRP-strengthened metallic structures[M]. Melboume:CRC Press,2013.
    [12]
    王毅, 冯鹏, 牛荻涛, 等. 电厂脱硫环境下FRP拉挤型材的长期性能研究[J]. 玻璃钢/复合材料, 2012(1):130-134.
    [13]
    KOOTSOOKOS A, MOURITZ A P. Seawater durability of glass- and carbon-polymer composites[J]. Composites Science and Technology, 2004, 64(10):1503-1511.
    [14]
    MILLER T C, CHAJES M J, MERTZ D R, et al. Strengthening of a steel bridge girder using CFRP plates[J]. Journal of Bridge Engineering, 2001,6(6):514-522.
    [15]
    TAVAKKOLIZADEH M,SAADATMANESH H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch[J]. Journal of Structural Engineering, 2003, 129(2):186-196.
    [16]
    LENWARI A, THEPCHATRI T, ALBRECHT P. Debonding strength of steel beams strengthened with CFRP plates[J]. Journal of Composites for Construction, 2006,10(1):69-78.
    [17]
    SALLAM H E M, AHMAD S S E, BADAWY A A M, et al. Evaluation of steel I-beams strengthened by various plating methods[J]. Advances in Structural Engineering, 2006, 9(4):535-544.
    [18]
    SCHNERCH D, RIZKALLA S. Flexural strengthening of steel bridges with high modulus CFRP strips[J]. Journal of Bridge Engineering, 2008, 13(2):192-201.
    [19]
    RAGHEB W F. Elastic local buckling of steel I-sections strengthened with bonded FRP strips[J]. Journal of Constructional Steel Research, 2015, 107:81-93.
    [20]
    RAGHEB W F. Inelastic local buckling and rotation capacity of steel I-beams strengthened with bonded FRP sheet[J/OL]. Journal of Composites for Construction, 2017, 21(1)[2017-04-16] http://doi. org/10.1061/(ASCE)CC.1943-5614.0000716.
    [21]
    KIANMOFRAD F, GHAFOORI E, ELYASI M M, et al. Strengthening of metallic beams with different types of prestressed unbonded retrofit systems[J]. Composite Structures, 2017, 159:81-95.
    [22]
    GHAFOORI E, MOTAVALLI M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and unbonded CFRP laminates with different prestress levels:Experimental and numerical study[J]. Construction & Building Materials, 2015, 76:194-206.
    [23]
    GHAFOORI E, MOTAVALLI M. Normal, high and ultra-high modulus carbon fiber-reinforced polymer laminates for bonded and un-bonded strengthening of steel beams[J]. Materials & Design, 2015, 67:232-243.
    [24]
    吴涛. 预应力碳纤维布加固钢梁抗弯性能研究[D]. 武汉:武汉大学,2005.
    [25]
    王德选. 预应力CFRP布加固钢箱梁与混凝土组合梁力学性能[D]. 沈阳:东北大学,2009.
    [26]
    ZHENG B, DAWOOD M. Fatigue repair of metallic structures with a thermally-activated shape memory alloy(SMA)/carbon fiber reinforced polymer(CFRP) patch[C]//Proceedings of the CICE. Hongkong:2016.
    [27]
    罗中良. 波形齿锚具对大吨位CFRP片材的锚固性能试验研究[D]. 重庆:重庆大学,2009.
    [28]
    哈娜. CFRP布加固钢骨混凝土梁及耐久性研究[D]. 沈阳:东北大学,2010.
    [29]
    霍君华. 预应力CFRP布加固腐蚀钢梁及组合梁的力学性能[D]. 沈阳:东北大学,2011.
    [30]
    GHAFOORI E, MOTAVALLI M. Innovative CFRP-prestressing system for strengthening metallic structures[J/OL]. Journal of Composites for Construction, 2015, 19(6)[2015-04-15]. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000559.
    [31]
    ZHU P, FAN H, ZHOU Y. Flexural behavior of aluminum I-beams strengthened by pre-stressed CFRP tendons[J]. Construction & Building Materials, 2016, 122:607-618.
    [32]
    HU L, FENG P, GAO W, et al. Flexural behavior of light steel purlins reinforced by prestressed CFRP laminates[J/OL]. Thin-Walled Structures, 2022, 174[2022-10-01]. https://doi.org/10.1016/j.tws.2022.109125.
    [33]
    中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018.
    [34]
    AISI. North American specification for the desgin of cold-formed steel structural members[S]. Canada CSA Group and Mexico Canacero,2016.
    [35]
    British Constructional Steelwork Association Ltd. Structural use of steelwork in building, code of practice for design of cold-formed thin gauge sections:BS 5950-5:2000[S]. London:British Standards Institution, 2000.
    [36]
    中华人民共和国建设部. 冷弯薄壁型钢结构技术规范:GB 50018-2002[S]. 北京:中国计划出版社,2002.
    [37]
    中华人民共和国住房和城乡建设部. 低层冷弯薄壁型钢房屋建筑技术规程:JGJ 227-2001[S]. 北京:中国建筑工业出版社,2011.
    [38]
    徐子风. 冷弯薄壁型钢偏压构件稳定性能与直接强度法[D]. 沈阳:沈阳建筑大学,2014.
    [39]
    朱正伟. 基于能量法的体外预应力筋应力增量计算方法研究[D]. 重庆:重庆大学,2005.
    [40]
    刘钊, 贺志启, 王景全. 基于能量法的体外预应力梁力筋应力增量研究[J]. 东南大学学报(自然科学版), 2008,38(1):136-140.
    [41]
    SOUDKI K, SCHUMACHER A, MOTAVALLI M. Flexural strengthening of a steel beam with prestressed strips-preliminary investigation[C]//9th International symposium on fiber reinforced polymer reinforcement for concrete structures (FRPRCS9). Sydney:2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return