Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YOU Guangdi, LI Feng, ZHANG Qijun, WANG Qinghe, HAN Tao. Long-Term Performance of Two-Span Continuous Steel-Recycled Concrete Composite Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 124-131. doi: 10.13204/j.gyjzG22070208
Citation: CUI Keran, YU Feng, CHEN Taiyao, QIN Yin, FANG Yuan, BU Shuangshuang. Research on Restoring Force Models of Reinforced Self-Stressing Steel Slag Concrete Columns Confined with Circular Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 50-61. doi: 10.13204/j.gyjzG22101204

Research on Restoring Force Models of Reinforced Self-Stressing Steel Slag Concrete Columns Confined with Circular Steel Tubes

doi: 10.13204/j.gyjzG22101204
  • Received Date: 2022-10-12
    Available Online: 2024-08-16
  • The seismic performence of ten reinforced self-stressing steel slag concrete columns confined with circular steel tubes and four reinforced steel slag concrete columns confined with circular tubes under quasi-static loading were tested. The effects of axial compression ratio, shear-span ratio, diameter-thickness ratio and expansion rate on the failure mode and hysteretic behavior were analyzed. The results showed that the flexural failure was observed in all specimens, and the damage was concentrated in the reserved gap. The fullness of the hysteretic curves increased as the decrease in the axial compression ratio, diameter-thickness ratio or the increase in the shear-span ratio and the expansion rate. The bearing capacity of the specimens increased with the increase of the axial compression ratio, diameter-thickness ratio and expansion rate, while the lateral deformation capacity decreased with the increase in axial compression ratio and diameter-thickness ratio. Subsequently, based on the experiment results, the simplified load-displacement skeleton curves were proposed considering the effects of axial compression ratio, shear-span ratio, diameter-thickness ratio and expansion rate. Moreover, according to the degraded tri-linear restoring force model, the hysteretic rules of the specimens were proposed, the restoring force model for reinforced self-stressing steel slag concrete columns confined with circular steel tubes was established, and the calculated results of the restoring force model were in good agreement with the experimental values.
  • [1]
    HAN L H, TAO Z, YAO G H. Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression[J]. Thin-Walled Structures, 2008, 46(3): 765-780.
    [2]
    HASSANEIN M F, PATEL V I, HADIDY A M E, et al. Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members[J]. Engineering Structures, 2018, 173(10): 495-511.
    [3]
    GAO W Q, ZHAO J H, FAN J C, et al. A theoretical model for predicting mechanical properties of circular concrete-filled steel tube short columns[J]. Structures, 2022, 45:572-585.
    [4]
    刘永健, 孙立鹏, 周绪红, 等. 钢管混凝土桥塔工程应用与研究进展[J]. 中国公路学报, 2022, 35(6): 1-21.
    [5]
    TOMII M, SAKINO K, XIAO Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube[C]//Proceeding of the International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin, China:1985: 119-125.
    [6]
    肖岩, 郭玉荣, 何文辉, 等. 局部加劲钢套管加固钢筋混凝土柱的研究[J]. 建筑结构学报, 2003, 24 (6): 79-86.
    [7]
    HAN L H, LIU W, YANG Y F. Behavior of thin-walled steel tube confined concrete stub columns subjected to axial local compression[J]. Thin-Walled Structures, 2008, 46(2): 155-164.
    [8]
    ZHU J Y, CHAN T M. Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression[J]. Journal of Constructional Steel Research, 2019, 162(11): 1-14.
    [9]
    赵迪, 张纪刚, 时成龙, 等. 钢管约束混凝土组合结构研究现状[J]. 建筑结构, 2023, 53(3): 41-51.
    [10]
    王静峰, 刘伟, 沈奇罕, 等. 考虑环向脱空影响的椭圆钢管混凝土短柱轴压性能研究[J]. 建筑结构学报, 2023, 44(2): 50-63.
    [11]
    MWAFY A, AMR E D, LAZKANI, et al. Behavior of expansive concrete-filled steel tubular columns under axial loadings[J]. Journal of Resilient Structures and Sustainable Construction, 2017, 136(4): 277-285.
    [12]
    王湛. 钢管膨胀混凝土工作机理及性能的研究[D]. 哈尔滨: 哈尔滨建筑大学, 1993.
    [13]
    郑宇宙, 陈力, 祝小龙, 等. 高强钢管约束自应力混凝土短柱轴压性能试验[J]. 工程科学与技术, 2022, 54(4): 56-63.
    [14]
    蒙春贵, 彭林欣, 滕晓丹. 基于统一强度理论的钢管自应力混凝土柱极限承载力研究[J]. 工业建筑, 2022, 52(1): 26-30

    , 38.
    [15]
    陈咏明, 曹国辉. 膨胀剂对钢管混凝土圆柱轴压承载能力试验研究[J]. 建筑结构, 2022, 52(增刊1) :1355-1359.
    [16]
    PRASANTA K, ARUN C B, KONJENGBAM D S. Experimental investigation of partially confined concrete-filled steel tubular square columns under lateral cyclic loading[J]. Journal of Constructional Steel Research, 2023, 201, 107751.
    [17]
    ROYCHAND R, KUMAR P B, ZHANG G M, et al. Recycling steel slag from municipal wastewater treatment plants into concrete applications-A step towards circular economy[J]. Conservation and Recycling, 2020, 152(1): 1-7.
    [18]
    ZHU J P, GUO Q L, GAO X, et al. Influence of steel slag on compressive strength and durability of concrete[J]. Materials Science Forum, 2011(12), 704-705: 1051-1054.
    [19]
    方圆, 于峰, 张扬, 等. 圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算[J]. 复合材料学报, 2020, 37(5): 1211-1220.
    [20]
    YU F, FANG Y, NIU K, et al. Experimental study on bond-slip constitutive relation of SSSCFST columns[J]. Structural Concrete, 2021, 22(4): 2338-2357.
    [21]
    FANG Y, YU F, BAI R, et al. Performance and capacity calculation methods of self-stressing steel slag concrete filled tubular short columns subjected to axial load[J]. Advanced Steel Construction, 2021, 17(1):60-66.
    [22]
    YU F, CHEN L, BU S S, et al. Experimental and theoretical investigations of recycled self-compacting concrete filled steel tubular columns subjected to axial compression[J]. Construction and Building Materials, 2020, 248(1), 118689.
    [23]
    YU F, FANG Y, ZHANG Y, et al. Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular stub columns[J]. Structural Concrete, 2020, 21(4): 1597-1611.
    [24]
    YU F, YIN L L, FANG Y, et al. Mechanical behavior of recycled coarse aggregates self-compacting concrete-filled steel tubular columns under eccentric compression[J]. Structural Concrete, 2019, 20(6): 2000-2014.
    [25]
    YU F, CAO Y, FANG Y, et al. Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular short columns with different loading modes[J]. Structures, 2020, 26:947-957.
    [26]
    肖顺, 李向民, 许清风, 等. 套筒灌浆缺陷对预制混凝土柱抗震性能影响的试验研究[J]. 建筑结构学报, 2022, 43(5):112-121.
    [27]
    张阳玺, 李睿喆, 邓明科, 等. 超高性能混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2023, 44(8):88-98.
    [28]
    于峰, 王旭良, 徐琳, 等. 基于可控膨胀率全钢渣砂混凝土基本性能研究[J]. 硅酸盐通报, 2015, 34(6): 1520-1525.
    [29]
    中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社, 2019.
    [30]
    中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.
    [31]
    欧智菁, 颜建煌, 俞杰, 等. 装配式圆钢管约束混凝土桥墩抗震试验及计算方法研究[J].土木工程学报, 2023, 56(1):77-89.
    [32]
    黄承逵, 常旭, 姜德成. 自应力钢管混凝土中核心钢渣混凝土单轴本构关系[J]. 大连理工大学学报, 2010, 50(1): 81-85.
    [33]
    韩林海. 钢管混凝土结构:理论与实践[M]. 北京: 科学出版社, 2007.
    [34]
    RICHART F E, BRANDTZAEG A, BROWN R L. A study of the failure of concrete under combined compressive stresses[R]. Urbana, IL:University of Illinois at Urbana-Champaign, 1928.
    [35]
    尚作庆, 黄承逵, 常旭, 等. 钢管自应力混凝土柱抗震性能试验研究[J]. 地震工程与工程震动, 2008, 28(3):77-81.
    [36]
    贾宏玉, 李爱伟, 李奉阁. 自密实自应力矩形钢管混凝土柱抗震性能试验研究[J]. 硅酸盐通报, 2018, 37(259): 219-224

    , 235.
  • Relative Articles

    [1]ZHANG Xuechang, LI Yanhua, ZHANG Sumei, WANG Yuyin, ZHOU Chong. Experimental Research on Long-Term Performance of Axially Loaded Steel- Tube-Confined CFST Short Columns Considering Temperature Effect[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 110-119. doi: 10.3724/j.gyjzG24080306
    [2]YAN Dawei, XUE Weichen, JIANG Jiafei. A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001
    [3]ZHONG Zhiwu. Mechanical Properties of Fly Ash Concrete After Creep and Being Subjected to Different Stresses[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 152-157,132. doi: 10.13204/j.gyjzG21112105
    [4]LI Jiaqi, CHEN Zhihua, DU Yansheng, WU Yongchuan, LIU Xueshan. STUDY ON CONSTITUTIVE MODEL OF CORE CONCRETE OF RECYCLED AGGREGATE CONCRETE FILLED STEEL TUBULAR COLUMNS UNDER COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 108-115,15. doi: 10.13204/j.gyjzG20081506
    [5]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [6]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [7]LAI Xiuying, CHEN Zhaoyu, ZHENG Juan. EXPERIMENTAL RESEARCH ON CREEP OF CONCRETE FILLED STEEL TUBES UNDER ECCENTRIC COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 139-146. doi: 10.13204/j.gyjz201904300010
    [8]He Xuejun, Yu Xiaoguang, Zhou Chaoyang, Liu Shu, Wu Xukang. FINITE ELEMENT ANALYSIS OF SEISMIC BEHAVIOR OF RC FRAME JOINTS INDIRECTLY STRENGTHENED WITH TIED AND LOCK-ANCHORED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 157-161. doi: 10.13204/j.gyjz201505033
    [9]Chen Zongping, Zhan Donghui, Xu Jinjun. RESEARCH ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE USING DIFFERENT RECYCLED COARSE AGGREGATE REPLACEMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 130-135. doi: 10.13204/j.gyjz201501026
    [10]Yang Yiting, Gong Chao, Hou Zhaoxin, Li Chengjiang. FINITE ELEMENT ANALYSIS OF MECHANICAL BEHAVIOR OF NEW TYPE HIGH STRENGTH STEEL-CONCRETE FLAT BEAM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 39-42. doi: 10.13204/j.gyjz201403010
    [11]Chen Zhouyi, Zheng Zhupeng, Lei Jiayan, Liu Lijun. DEFORMATION AND STRESS REDISTRIBUTION OF CCRST COLUMNS UNDER LONG-TERM AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 68-72. doi: 10.13204/j.gyjz201101017
    [12]Wang Haiyang, Zha Xiaoxiong, Huang Haochun, Wang Xiaodong. EXPERIMENTAL STUDY ON THE CREEP EFFECT OF THE EXPANSIVE AGENT AND RECYCLED CFST COLUMN IN CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 43-46,66. doi: 10.13204/j.gyjz201106008
    [13]Zhang Yuntao, Meng Shaoping, Xi Zhuo, Pan Zuanfeng, Lin Bo. EXPERIMENTAL RESEARCH ON PRESTRESSING TIME-DEPENDENT LOSS OF HIGH-PERFORMANCE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 21-25. doi: 10.13204/j.gyjz200912006
    [14]Zhang Yuntao, Xi Zhuo, Meng Shaoping, Liu Zhao. EXPERIMENTAL STUDY ON BEHAVIOR OF CANTILEVER GIRDER INDUCED BY SHRINKAGE AND CREEP OF HIGH-PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 26-28. doi: 10.13204/j.gyjz200912007
    [15]Zhang Yong-sheng, Li Yan-ying, Meng Shao-ping. RESEARCH ON TEMPERATURE AND SHRINKAGE CRACK OF SUPER-LONG FRAME BEAM-SLAB STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 50-53,76. doi: 10.13204/j.gyjz200606016
    [16]Wu Jing, Wu Jun-yan, Meng Shao-ping. RESEARCH ON INDIRECT STRESS AND CRACK CONTROL OF CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 13-15,98. doi: 10.13204/j.gyjz200605004
    [17]Zhang Yu-ming, Wu Jing, Meng Shao-ping. STUDY ON CONTROL OF CRACK IN PRESTRESSED CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 8-12. doi: 10.13204/j.gyjz200605003
    [18]Sun Hai-lin, Ye Lie-ping, Guo Yu-shun, Ding Jian-tong. LONG-TERM DEFLECTION OF HIGH-STRENGTH LIGHTWEIGHT AGGREGATE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 88-91,113. doi: 10.13204/j.gyjz200606024
    [19]Yao Wu. CONTROL AND OPTIMIZED DESIGN FOR VOLUME STABILITY OF HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 74-77. doi: 10.13204/j.gyjz200511022
    [20]Song Wei, Yuan Yong. PRACTICAL ANALYSIS OF FLEXURAL STIFFNESS OF PRESTRESS CONCRETE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 30-33. doi: 10.13204/j.gyjz200411009
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.4 %FULLTEXT: 10.4 %META: 83.5 %META: 83.5 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.3 %其他: 10.3 %上海: 0.9 %上海: 0.9 %东莞: 0.9 %东莞: 0.9 %保定: 0.9 %保定: 0.9 %兰州: 0.9 %兰州: 0.9 %北京: 2.6 %北京: 2.6 %合肥: 0.9 %合肥: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %天津: 0.9 %天津: 0.9 %宣城: 0.9 %宣城: 0.9 %常州: 0.9 %常州: 0.9 %常德: 0.9 %常德: 0.9 %廊坊: 0.9 %廊坊: 0.9 %成都: 1.7 %成都: 1.7 %扬州: 0.9 %扬州: 0.9 %新乡: 5.2 %新乡: 5.2 %昆明: 3.4 %昆明: 3.4 %沈阳: 17.2 %沈阳: 17.2 %济南: 1.7 %济南: 1.7 %温州: 0.9 %温州: 0.9 %漯河: 2.6 %漯河: 2.6 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 2.6 %芝加哥: 2.6 %西宁: 13.8 %西宁: 13.8 %西安: 1.7 %西安: 1.7 %贵阳: 1.7 %贵阳: 1.7 %运城: 7.8 %运城: 7.8 %邢台: 0.9 %邢台: 0.9 %郑州: 2.6 %郑州: 2.6 %重庆: 0.9 %重庆: 0.9 %长沙: 0.9 %长沙: 0.9 %其他上海东莞保定兰州北京合肥嘉兴天津宣城常州常德廊坊成都扬州新乡昆明沈阳济南温州漯河芒廷维尤芝加哥西宁西安贵阳运城邢台郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads(0) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return