Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 5
May  2023
Turn off MathJax
Article Contents
SONG Taiyu, ZHENG Xinguang, SUN Xuxia, BAI Zhijuan. Spatial Grid Model with Diagonal Beam Elements Based on the Optimization of Spatial Mechanical Behaviors[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 88-94. doi: 10.13204/j.gyjzG22081819
Citation: SONG Taiyu, ZHENG Xinguang, SUN Xuxia, BAI Zhijuan. Spatial Grid Model with Diagonal Beam Elements Based on the Optimization of Spatial Mechanical Behaviors[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 88-94. doi: 10.13204/j.gyjzG22081819

Spatial Grid Model with Diagonal Beam Elements Based on the Optimization of Spatial Mechanical Behaviors

doi: 10.13204/j.gyjzG22081819
  • Received Date: 2022-08-18
  • A novel spatial grid model with diagonal beam elements is proposed to analyze the spatial mechanical behaviors of concrete box-section girders at the elastic linear state. The establishment of the model is based on an optimization problem: the objective functions are the absolute relative differences between the deformations from the proposed model and the actual plate under three basic types of loads including in-plane axial compression, in-plane shear, and out-of-plane bending; the variable parameters of the functions are the properties of vertical and horizontal beam and diagonal beam elements in the proposed model; the objective for the optimization is to minimize the objective functions. By solving the optimization problem, the spatial grid model with diagonal beam elements based on the optimization of spatial mechanical behaviors is established. The validity of the proposed model is illustrated with a cantilever beam under a concentrated load and a simply supported box-section girder with uniform loads as case examples. The results show that the spatial grid model with diagonal beam elements is not limited by the plane section hypothesis and is capable of accurately predicting the bending stiffness and in-plane shear stiffness. The results also reveal that the proposed model can yield deformation results consistent with the solution based on the mechanics of materials considering shear deformations and with the results from solid element models.
  • loading
  • [1]
    范立础. 桥梁工程(上册)[M]. 北京:人民交通出版社, 2007.
    [2]
    HAMBLY E C. Bridge deck behaviour, second edition[M]. London: Taylor & Francis Group, 1991.
    [3]
    宋泰宇. 混凝土曲线箱梁桥极限状态分析理论及方法[D]. 上海:同济大学, 2019.
    [4]
    陈逵. 有限平面桁架单元法的研究及应用[D]. 长沙:湖南大学, 2005.
    [5]
    孙利民,秦东,范立础. 扩展散体单元法在钢筋混凝土桥梁倒塌分析中的应用[J]. 土木工程学报, 2002, 35(6): 53-58.
    [6]
    吴方伯,陈坚强,尚守平. 等效铰结桁架单元[J]. 工程力学, 2005, 22(2):84-88.
    [7]
    李春涛. 多重随机等效平面桁架模型理论研究[D]. 天津:天津大学, 2008.
    [8]
    吴方伯,熊江陵,李钧,等. 基于空间等效桁架单元方法的钢筋混凝土结构非线性分析[J]. 建筑科学与工程学报, 2015, 32(3): 1-6.
    [9]
    吴方伯,韩松,尚守平. 钢筋混凝土平面等效桁架模型[J]. 四川建筑, 2007(6): 158-160,163.
    [10]
    吴方伯,丁先立,周绪红,等. 采用等效平面桁架单元对钢筋混凝土结构进行非线性分析[J]. 建筑结构学报, 2005(5): 112-117.
    [11]
    徐栋,赵瑜,刘超. 混凝土桥梁结构实用精细化分析与配筋设计[M]. 北京:人民交通出版社, 2013.
    [12]
    徐栋,徐方圆,赵瑜,等. 箱梁结构完整验算应力和空间网格模型[J]. 土木工程学报, 2014, 47(5): 46-55.
    [13]
    马哗,尼颖升,徐栋,等. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
    [14]
    徐栋,张宇,邓锦平. 基于平面框架模型的肋式转向结构简化计算方法[J]. 同济大学学报(自然科学版), 2016, 44(10): 1497-1503.
    [15]
    姜启源,谢金星,叶俊. 数学模型(第三版)[M]. 北京:高等教育出版社, 2003.
    [16]
    宋子康,蔡文安. 材料力学[M]. 上海:同济大学出版社, 2005.
    [17]
    程昌钧. 弹性力学[M]. 兰州:兰州大学出版社, 1996.
    [18]
    J. T. 奥登,E. A. 里帕格. 弹性结构力学[M]. 成文山,等,译. 北京:中国建筑工业出版社, 1986.
    [19]
    朱伯芳. 有限单元法原理与应用[M]. 3版. 北京:中国水利水电出版社, 2009.
    [20]
    王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return