Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yang, LIU Chong, WANG Lixia. Research on Health Monitoring of Frame Shear Wall Structures Based on Wavelet Packet Transform[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 211-218. doi: 10.13204/j.gyjzG22071916
Citation: HU Zhenzhong, LIU Yi, LIN Chao. Research Prospect of BIM-Based Information Technologies for Engineering Management[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 195-203. doi: 10.13204/j.gyjzG22073009

Research Prospect of BIM-Based Information Technologies for Engineering Management

doi: 10.13204/j.gyjzG22073009
  • Received Date: 2022-07-30
    Available Online: 2023-03-22
  • As the process of social informatization accelerates, information technologies have gradually become an important means for construction practitioners to improve the quality of engineering management. As a key component of the digital development of the construction industry, building information modeling (BIM) has been widely applied in engineering management. How to further develop information technologies for engineering management on the basis of existing theories and applications has thus become the focus of researchers' attention. This paper summarized BIM-related research from two aspects:the organization and processing of engineering data as well as the mining and analysis of such data. The research investigated involved the Industry Foundation Classes (IFC) standard, multi-scale information models, model lightweighting technology, and the key steps and typical methods of data mining in the engineering industry. On this basis, the bottleneck problems faced by BIM and information technologies for engineering were analyzed, and three main future development directions were then proposed and discussed:digital twins in the engineering industry, city information models, and knowledge graphs in the engineering industry. This paper is expected to provide a reference for further research and technology application.
  • [1]
    LASI H, FETTKE P, KEMPER H, et al. Industry 4.0[J]. Business & Information Systems Engineering, 2014, 6(4):239-242.
    [2]
    ABDELKHALEK H, REFAIE H, AZIZ R. Optimization of time and cost through learning curve analysis[J]. Ain Shams Engineering Journal, 2020, 11(4):1069-1082.
    [3]
    CHANG L J, WANG Y N, FENG G H, et al. Research on problems and solutions in construction quality supervision of construction projects[J]. Smart Construction Research, 2018, 2(3). DOI: 10.18063/scr.v2i3.588.
    [4]
    PENG R L, ZHANG M, LIU T Y. Analysis of key points in safety supervision and management of construction site[J].Earth and Environmental Science, 2021.DOI: 10.1088/1755-1315/760/1/012035.
    [5]
    ZHAI X M, CHENG X. Environmental protection requirements of power transmission and transformation project construction based on internet of things technology and its change trend analysis[J].Materials Science and Engineering, 2020. DOI: 10.1088/1757-899X/740/1/012144.
    [6]
    马智亮,李松阳."互联网+"环境下项目管理新模式[J].同济大学学报(自然科学版),2018,46(7):991-995.
    [7]
    KANG T, CHOI H. BIM-based data mining method considering data integration and function extension[J]. KSCE Journal of Civil Engineering, 2018, 22(5):1523-1534.
    [8]
    HABIBI S. The promise of BIM for improving building performance[J]. Energy and Buildings, 2017, 153:525-548.
    [9]
    VALINEJADSHOUBI M, BAGCHI A, MOSELHI O. Development of a BIM-based data management system for structural health monitoring with application to modular buildings:case study[J]. Journal of Computing in Civil Engineering, 2019, 33(3):05019003.
    [10]
    ISMAIL S, BANDI S, MAAZ Z. An appraisal into the potential application of big data in the construction industry[J]. International Journal of Built Environment and Sustainability, 2018, 5(2):145-154.
    [11]
    ZHANG J P, YU F Q, LI D, et al. Development and implementation of an industry foundation classes-based graphic information model for virtual construction[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(1):60-74.
    [12]
    FAI S, RAFEIRO J. Establishing an appropriate level of detail (LoD) for a building information model (BIM)-West Block, Parliament Hill, Ottawa, Canada[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 2(5):123-130.
    [13]
    HU Z Z, ZHANG J P, YU F Q, et al. Construction and facility management of large MEP projects using a multi-scale building information model[J]. Advances in Engineering Software, 2016, 100:215-230.
    [14]
    THOMAS D, MILLER C, KÄMPF J, et al. Multiscale co-simulation of EnergyPlus and CitySim models derived from a building information model[C]//Bausim 2014:Fifth German-Austrian IBPSA Conference. Aachen:RWTH Aachen University, 2014:469-476.
    [15]
    DELVAL T, GEFFROY B, REZOUG M, et al. BIM to develop integrated, incremental and multiscale methods to assess comfort and quality of public spaces[C]//International Conference on Computing in Civil and Building Engineering. Springer:2020:160-179.
    [16]
    付沙, 周航军. 关联规则挖掘Apriori算法的研究与改进[J]. 微电子学与计算机, 2013, 30(9):110-114.
    [17]
    WEN Q, ZHANG J P, HU Z Z, et al. A data-driven approach to improve the operation and maintenance management of large public buildings[J]. IEEE Access, 2019(7):176127-176140.
    [18]
    LENG S, LIN J R, HU Z Z, et al. A hybrid data mining method for tunnel engineering based on real-time monitoring data from tunnel boring machines[J]. IEEE Access, 2020(8):90430-90449.
    [19]
    PENG Y, LI S W, HU Z Z. A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks[J]. Neurocomputing, 2019, 365:71-85.
    [20]
    马智亮,蔡诗瑶.基于BIM的建筑施工智能化[J].施工技术,2018,47(6):70-72

    ,83.
    [21]
    陶飞,张贺,戚庆林,等.数字孪生十问:分析与思考[J].计算机集成制造系统,2020,26(1):1-17.
    [22]
    QIAN Y C, LENG J W. CIM-based modeling and simulating technology roadmap for maintaining and managing Chinese rural traditional residential dwellings[J]. Journal of Building Engineering, 2021, 44.DOI: 10.1016/j.jobe.2021.103248.
    [23]
    任萍. 智慧城市背景下的智慧地铁建设[J]. 经济学, 2022, 5(2):25-29.
    [24]
    傅连珍,胡道功,张绪教,等. 基于GIS空间分析模型的祁连山多年冻土研究[J]. 地质力学学报, 2022, 21(3):371-377.
    [25]
    LENG S, LI S W, HU Z Z, et al. Development of a micro-in-meso-scale framework for simulating pollutant dispersion and wind environment in building groups[J]. Journal of Cleaner Production, 2022, 364.DOI: 10.1016/j.jclepro.2022.132661.
    [26]
    刘毅, 吴浪韬, 梁雄, 等. 知识图谱在BIM模型审查中的应用研究[C]//第六届全国BIM学术会议论文集.2020:122-126.
    [27]
    王莉,王建平,许娜,等.基于知识图谱的地铁工程事故知识建模与分析[J].土木工程与管理学报,2019,36(5):109-114

    ,122.
    [28]
    李新琴, 史天运, 李平,等. 基于文本的高速铁路信号设备故障知识抽取方法研究[J]. 铁道学报, 2021, 43(3):92-100.
  • Relative Articles

    [1]BU Yang, ZHANG Ping. Finite Element Analysis on Seismic Performance of Buckling-Restrained Butterfly-Shaped Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 62-69,208. doi: 10.13204/j.gyjzG20041801
    [2]WANG Weiyong, YANG Qibo, LIANG Zhanshuo, OU Ying, JIANG Xianchun. Seismic Response of the Joint Between Steel Truss Concrete Composite Shear Wall and Steel Coupling Beam[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 39-48. doi: 10.13204/j.gyjzG22040401
    [3]LI Yun, LIU Yang, ZHANG Xianlong, HE Fujiangshan, FENG Ruoqiang. Research on Hysteretic Performance of Grid-Tube Double Steel Plate Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 32-38. doi: 10.13204/j.gyjzG21081212
    [4]BAI Zhengxian, CUI Hu, JIANG Ziqin, SHEN Cunjie, SU Lei, ZHANG Wenying. Influence of Different Parameters on Hysteretic Behavior of Corrugated Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 24-31,103. doi: 10.13204/j.gyjzG21122105
    [5]ZHENG, Liang, QIN, Cheng, ZHANG, Dapeng. RESEARCH ON STRUCTURAL INFLUENCING COEFFICIENT OF STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 154-161. doi: 10.13204/j.gyjz202001025
    [6]WANG Wei, HAN Bin, WANG Wanzhi, HUANG Yuanzhao, HOU Mingyue. RESEARCH ON STIFFNESS MATCHING RELATIONSHIP BETWEEN EMBEDDED STEEL PLATE AND REPLACEABLE TOE DAMPER IN CORRUGATED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 111-117,87. doi: 10.13204/j.gyjz202004020
    [7]Zhao Jianli, Zhao Wei, He Huanhuan, Dong Changchun. EXPERIMENTAL RESEARCH ON VERTICALLY STIFFENED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 119-124. doi: 10.13204/j.gyjz201505026
    [8]Yuan Changlu Hao Jiping Fang Chen, . SEISMIC BEHAVIOR OF STEEL FRAME-STEEL PLATE SHEAR WALL SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 142-147. doi: 10.13204/j.gyjz201507029
    [9]Zhao Wei, Duan Qingxing, Tong Genshu. STUDY OF ELASTIC-PLASTIC DESIGN TECHNOLOGY OF UNSTIFFENED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 146-151.
    [10]Wu Jingshu, Zhang Xinbin, He Mi. INFLUENCE OF OPENING ON SEISMIC BEHAVIOR OF STEEL PLATE REINFORCED CONCRETE SHEAR WALLS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 30-35. doi: 10.13204/j.gyjz2001412006
    [11]Yuan Xiaojing, Zhao Wei. EXPERIMENT RESEARCH ON STEEL PLATE SHEAR WALL WITH HORIZONTAL STIFFENER[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 123-127. doi: 10.13204/j.gyjz2001412020
    [12]Tong Genshu, Tang Xuemei, Zhang Lei. ELASTIC STABILITY OF STEEL PLATE SHEAR WALL WITH CROSS STIFFENERS IN SHEAR[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 122-129. doi: 10.13204/j.gyjz201406027
    [13]Qian Kuan, Sun Yunlun, Yang Fang, Pan Rong, Tian Chunyu. EXPERIMENTAL STUDY OF MECHANICAL BEHAVIOR STEEL-CONCRETE SANDWICH COMPOSITE SHEAR WALLS UNDER COMPOSITE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 12-16. doi: 10.13204/j.gyjz2001412003
    [14]Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
    [15]Zheng Yue, Zhao Wei. ELASTIC BUCKLING ANALYSIS OF STEEL PLATE SHEAR WALL WITH ELASTIC RESTRAINT OF TWO SIDES UNDER THE ACTION OF SHEAR AND COMPRESSION FORCE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 124-126,130. doi: 10.13204/j.gyjz201109028
    [16]Li Ran, Guo Lanhui, Zhang Sumei. HYSTERETIC ANALYSIS OF STRENGTHENED STEEL PLATE SHEAR WALL CONNECTED WITH FRAME BEAMS ONLY[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 107-113. doi: 10.13204/j.gyjz201107024
    [17]Li Yan, Hao Jiping, Zhou Qi, Xie Qi, Guo Hongchao. EXPERIMENTAL STUDY AND FINITE ELEMENT ANALYSIS OF STEEL PLATE SHEAR WALL WITH UNSTIFFENED WELDED-BOLTED CONNECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 101-106,100. doi: 10.13204/j.gyjz201107023
    [18]Zheng Yue, Zhao Wei. ELASTIC BUCKLING PROPERTIES OF STEEL PLATE SHEAR WALL UNDER SHEAR AND PRESSURE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 105-109. doi: 10.13204/j.gyjz201108025
    [19]Xu Man, Wang Yuyin, Zhang Sumei. SHERA RESISTANCE BEHAVIOR OF TWO-SIDE CONNECTED STEEL-PLATE SHEAR WALL (SPSW)[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 107-111. doi: 10.13204/j.gyjz200903028
    [20]Liao Fei-yu, Tao Zhong. EXPERIMENTS ON BEHAVIOR OF RC SHEAR WALLS FRAMED WITH DIFFERENT KINDS OF COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 31-34,118. doi: 10.13204/j.gyjz200712007
  • Cited by

    Periodical cited type(4)

    1. 覃秋冬,陆琨,陶忠,李鑫鑫. 新型高延性混凝土-压型钢板组合楼板承载力试验研究. 工业安全与环保. 2024(02): 1-6 .
    2. 吕静静,赵艺园. 高延性混凝土材料在某农用住宅建筑抗震加固设计中的应用. 中国建筑装饰装修. 2024(08): 113-115 .
    3. 黄国清. 新型玻璃纤维GFRP筋聚合砂浆板加固混凝土梁的粘接性能研究. 粘接. 2023(12): 96-99 .
    4. 田绍博,康洪震,乔瀚林. 高延性混凝土加固技术在砖混砌体结构的应用研究. 砖瓦. 2022(12): 73-75 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.5 %FULLTEXT: 22.5 %META: 77.5 %META: 77.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.6 %其他: 18.6 %北京: 1.0 %北京: 1.0 %十堰: 1.0 %十堰: 1.0 %台州: 1.0 %台州: 1.0 %宁德: 2.9 %宁德: 2.9 %宣城: 1.0 %宣城: 1.0 %常德: 2.0 %常德: 2.0 %张家口: 2.9 %张家口: 2.9 %晋城: 1.0 %晋城: 1.0 %漯河: 1.0 %漯河: 1.0 %芒廷维尤: 22.5 %芒廷维尤: 22.5 %西宁: 32.4 %西宁: 32.4 %西安: 1.0 %西安: 1.0 %贵阳: 1.0 %贵阳: 1.0 %运城: 6.9 %运城: 6.9 %郑州: 1.0 %郑州: 1.0 %重庆: 2.9 %重庆: 2.9 %其他北京十堰台州宁德宣城常德张家口晋城漯河芒廷维尤西宁西安贵阳运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads(15) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return