Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yang, LIU Chong, WANG Lixia. Research on Health Monitoring of Frame Shear Wall Structures Based on Wavelet Packet Transform[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 211-218. doi: 10.13204/j.gyjzG22071916
Citation: LUO Daming, LI Fan, NIU Ditao. Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 131-138. doi: 10.13204/j.gyjzG22073005

Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation

doi: 10.13204/j.gyjzG22073005
  • Received Date: 2022-07-30
    Available Online: 2023-03-22
  • Concrete structures in coastal areas, salt lakes, and deicing salt areas are seriously eroded by chloride ions, which has caused great economic losses. Traditional chloride transport models based on Fick's second law fail to consider influencing factors comprehensively and cannot reflect the transport behavior of chloride ions in field engineering. In addition, the chloride transport model based on the Nernst-Plank equation takes into account the synergy of multiple factors, but its equation is difficult to be solved, which thus limits its application in engineering. According to the Nernst-Plank equation, this study analyzed the multi-ion transport model of cement-based materials under erosion and carried out an unsteady state electromigration test of the chlorine ions and a moisture transport test of the concrete. In addition, the study considered the composition of the concrete mixture, the physical and chemical properties of binding materials, and the service environment characteristics of the structure and simulated the chloride transport process in ordinary concrete and internal curing concrete by using the STADIUM® software. The results show that internal curing can improve the resistance of concrete to ion erosion and prolong the service life of the concrete structures, but the improvement is limited in the later stage. Furthermore, STADIUM® software can better simulate the transport behavior of chloride ions in concrete, which provides a convenient method for predicting the life of concrete structures.
  • [1]
    王鹏刚,莫芮,隋晓萌,等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报,2022,50(2):512-521.
    [2]
    王建民,刘冠国,雷笑,等. 盐雾环境下混凝土抗氯离子性能试验研究[J]. 工业建筑,2013,43(11):89-91.
    [3]
    于英俊,郭小华,王玲,等. 酸和氯盐耦合作用下混凝土结构耐久性评估及修复[J]. 工业建筑,2019,49(3):180-185.
    [4]
    钟小平,金伟良,张宝健. 氯盐环境下混凝土结构的耐久性设计方法[J]. 建筑材料学报,2016,19(3):544-549.
    [5]
    付传清,屠一军,金贤玉,等. 荷载和环境共同作用下混凝土中氯离子传输的试验研究[J]. 水利学报,2016,47(5):674-684.
    [6]
    WANG Y, FU K. Comparisons of instantaneous chloride diffusion coefficients determined by RCM method and chloride natural diffusion test[J]. Construction and Building Materials, 2019, 223(30):595-604.
    [7]
    YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement & Concrete Research, 2002, 32(10):1559-1565.
    [8]
    LU X Y. Application of the Nernst-Einstein equation to concrete[J]. Cement & Concrete Research, 1997, 27(2):293-302.
    [9]
    祝小靓,金峰,周虎,等. 基于Permit法的纳固材料混凝土表层氯离子扩散性能研究[J]. 工业建筑,2018,48(3):37-40.
    [10]
    DA B, YU H F, MA H Y, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123(1):47-58.
    [11]
    罗大明,张桂涛. 基于贝叶斯理论的氯离子扩散系数计算模型[J]. 西安建筑科技大学学报(自然科学版),2019,51(5):710-716.
    [12]
    关博文,杨涛,吴佳育,等. 交变荷载作用下损伤混凝土中氯离子传输行为[J]. 建筑材料学报,2018,21(2):304-308.
    [13]
    延永东,刘荣桂,陆春华,等. 养护湿度对混凝土内氯离子传输的影响[J]. 哈尔滨工业大学学报,2016,48(12):148-152.
    [14]
    袁利强,孙丛涛,程火焰. 非饱和混凝土氯离子传输模型研究综述[J]. 混凝土,2015(6):32-36.
    [15]
    胡劲哲,牛建刚,孙丛涛,等. 海洋大气区氯离子在混凝土中的沉积与传输行为研究综述[J]. 土木与环境工程学报(中英文),2020,42(2):165-178.
    [16]
    杨燕,谭康豪,覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报,2021,35(13):13109-13118.
    [17]
    TOUMI A, FRAN OIS R, ALVARADO O. Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens[J]. Cement & Concrete Research, 2007, 37(1):54-62.
    [18]
    SAMSON E, MARCHAND J. Modeling the transport of ions in unsaturated cement-based materials[J]. Computers & Structures, 2007, 85(23/24):1740-1756.
    [19]
    罗大明,牛荻涛. 不同湿度环境下内养护混凝土气体传输性能试验研究[J]. 建筑结构学报,2021,42(8):193-203.
    [20]
    RAOUFI K, SCHLITTER J, BENTZ D, et al. Parametric assessment of stress development and cracking in internally cured restrained mortars experiencing autogenous deformations and thermal loading[J]. Advances in Civil Engineering, 2011(1):1-16.
    [21]
    HELFFERICH F G. Ion exchange[M]. Courier Dover Publications, 1962.
    [22]
    BOCKRIS J O, REDDY A K. Modern electrochemistry:an introduction to an interdisciplinary area[M]. Springer, 1973.
    [23]
    POURBAIX M. Atlas of electrochemical equilibria[M]. New York:Pergamon Press, 1966.
    [24]
    HIDALGO A, VERA G, CLIMENT M A, et al. Measurements of chloride activity coefficients in real Portland cement paste pore solutions[J]. Journal of the American Ceramic Society, 2001, 84(12):3008-3012.
    [25]
    PANKOW J F. Aquatic chemistry concepts[M]. Lewis Publishers, 1991.
    [26]
    SAMSON E, LEMAIRE G, MARCHAND J, et al. Modeling chemical activity effects in strong ionic solutions[J]. Computational Materials Science, 1999, 15(3):285-294.
    [27]
    BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. The Netherlands:Kluwer Academic Publishers, 1990.
    [28]
    SAMSON E, MARCHAND J. Modeling the effect of temperature on ionic transport in cementitious materials[J]. Cement and Concrete Research, 2007, 37(3):455-468.
    [29]
    MACQUARRIE K T B, MAYER K U. Reactive transport modeling in fractured rock:a state-of-the-science review[J]. Earth-Science Reviews, 2005, 72(3/4):189-227.
    [30]
    BENTZ D P, LURA P, ROBERTS J W. Mixture proportioning for internal curing[J]. Concrete International, 2005, 27(2):35-40.
    [31]
    Standard test method for density, absorption, and voids in hardened concrete:ASTM C642-21[S]. West Conshohocken, PA:ASTM International, 2021.
    [32]
    User guide:Stadium® Lab V3.0[S]. Quebec City, Quebec:SIMCO Technologies Inc., 2011.
    [33]
    BENTZ D P. Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars[J]. Cement and Concrete Composites, 2009, 31(5):285-289.
    [34]
    郝磊,陈峰,彭文锋,等. 沿海混凝土结构氯离子对流区深度计算模型[J]. 硅酸盐通报,2022,41(5):1627-1637.
  • Relative Articles

    [1]BU Yang, ZHANG Ping. Finite Element Analysis on Seismic Performance of Buckling-Restrained Butterfly-Shaped Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 62-69,208. doi: 10.13204/j.gyjzG20041801
    [2]WANG Weiyong, YANG Qibo, LIANG Zhanshuo, OU Ying, JIANG Xianchun. Seismic Response of the Joint Between Steel Truss Concrete Composite Shear Wall and Steel Coupling Beam[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 39-48. doi: 10.13204/j.gyjzG22040401
    [3]LI Yun, LIU Yang, ZHANG Xianlong, HE Fujiangshan, FENG Ruoqiang. Research on Hysteretic Performance of Grid-Tube Double Steel Plate Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 32-38. doi: 10.13204/j.gyjzG21081212
    [4]BAI Zhengxian, CUI Hu, JIANG Ziqin, SHEN Cunjie, SU Lei, ZHANG Wenying. Influence of Different Parameters on Hysteretic Behavior of Corrugated Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 24-31,103. doi: 10.13204/j.gyjzG21122105
    [5]ZHENG, Liang, QIN, Cheng, ZHANG, Dapeng. RESEARCH ON STRUCTURAL INFLUENCING COEFFICIENT OF STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 154-161. doi: 10.13204/j.gyjz202001025
    [6]WANG Wei, HAN Bin, WANG Wanzhi, HUANG Yuanzhao, HOU Mingyue. RESEARCH ON STIFFNESS MATCHING RELATIONSHIP BETWEEN EMBEDDED STEEL PLATE AND REPLACEABLE TOE DAMPER IN CORRUGATED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 111-117,87. doi: 10.13204/j.gyjz202004020
    [7]Zhao Jianli, Zhao Wei, He Huanhuan, Dong Changchun. EXPERIMENTAL RESEARCH ON VERTICALLY STIFFENED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 119-124. doi: 10.13204/j.gyjz201505026
    [8]Yuan Changlu Hao Jiping Fang Chen, . SEISMIC BEHAVIOR OF STEEL FRAME-STEEL PLATE SHEAR WALL SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 142-147. doi: 10.13204/j.gyjz201507029
    [9]Zhao Wei, Duan Qingxing, Tong Genshu. STUDY OF ELASTIC-PLASTIC DESIGN TECHNOLOGY OF UNSTIFFENED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 146-151.
    [10]Wu Jingshu, Zhang Xinbin, He Mi. INFLUENCE OF OPENING ON SEISMIC BEHAVIOR OF STEEL PLATE REINFORCED CONCRETE SHEAR WALLS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 30-35. doi: 10.13204/j.gyjz2001412006
    [11]Yuan Xiaojing, Zhao Wei. EXPERIMENT RESEARCH ON STEEL PLATE SHEAR WALL WITH HORIZONTAL STIFFENER[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 123-127. doi: 10.13204/j.gyjz2001412020
    [12]Tong Genshu, Tang Xuemei, Zhang Lei. ELASTIC STABILITY OF STEEL PLATE SHEAR WALL WITH CROSS STIFFENERS IN SHEAR[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 122-129. doi: 10.13204/j.gyjz201406027
    [13]Qian Kuan, Sun Yunlun, Yang Fang, Pan Rong, Tian Chunyu. EXPERIMENTAL STUDY OF MECHANICAL BEHAVIOR STEEL-CONCRETE SANDWICH COMPOSITE SHEAR WALLS UNDER COMPOSITE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 12-16. doi: 10.13204/j.gyjz2001412003
    [14]Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
    [15]Zheng Yue, Zhao Wei. ELASTIC BUCKLING ANALYSIS OF STEEL PLATE SHEAR WALL WITH ELASTIC RESTRAINT OF TWO SIDES UNDER THE ACTION OF SHEAR AND COMPRESSION FORCE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 124-126,130. doi: 10.13204/j.gyjz201109028
    [16]Li Ran, Guo Lanhui, Zhang Sumei. HYSTERETIC ANALYSIS OF STRENGTHENED STEEL PLATE SHEAR WALL CONNECTED WITH FRAME BEAMS ONLY[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 107-113. doi: 10.13204/j.gyjz201107024
    [17]Li Yan, Hao Jiping, Zhou Qi, Xie Qi, Guo Hongchao. EXPERIMENTAL STUDY AND FINITE ELEMENT ANALYSIS OF STEEL PLATE SHEAR WALL WITH UNSTIFFENED WELDED-BOLTED CONNECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 101-106,100. doi: 10.13204/j.gyjz201107023
    [18]Zheng Yue, Zhao Wei. ELASTIC BUCKLING PROPERTIES OF STEEL PLATE SHEAR WALL UNDER SHEAR AND PRESSURE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 105-109. doi: 10.13204/j.gyjz201108025
    [19]Xu Man, Wang Yuyin, Zhang Sumei. SHERA RESISTANCE BEHAVIOR OF TWO-SIDE CONNECTED STEEL-PLATE SHEAR WALL (SPSW)[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 107-111. doi: 10.13204/j.gyjz200903028
    [20]Liao Fei-yu, Tao Zhong. EXPERIMENTS ON BEHAVIOR OF RC SHEAR WALLS FRAMED WITH DIFFERENT KINDS OF COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 31-34,118. doi: 10.13204/j.gyjz200712007
  • Cited by

    Periodical cited type(4)

    1. 覃秋冬,陆琨,陶忠,李鑫鑫. 新型高延性混凝土-压型钢板组合楼板承载力试验研究. 工业安全与环保. 2024(02): 1-6 .
    2. 吕静静,赵艺园. 高延性混凝土材料在某农用住宅建筑抗震加固设计中的应用. 中国建筑装饰装修. 2024(08): 113-115 .
    3. 黄国清. 新型玻璃纤维GFRP筋聚合砂浆板加固混凝土梁的粘接性能研究. 粘接. 2023(12): 96-99 .
    4. 田绍博,康洪震,乔瀚林. 高延性混凝土加固技术在砖混砌体结构的应用研究. 砖瓦. 2022(12): 73-75 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.5 %FULLTEXT: 22.5 %META: 77.5 %META: 77.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.6 %其他: 18.6 %北京: 1.0 %北京: 1.0 %十堰: 1.0 %十堰: 1.0 %台州: 1.0 %台州: 1.0 %宁德: 2.9 %宁德: 2.9 %宣城: 1.0 %宣城: 1.0 %常德: 2.0 %常德: 2.0 %张家口: 2.9 %张家口: 2.9 %晋城: 1.0 %晋城: 1.0 %漯河: 1.0 %漯河: 1.0 %芒廷维尤: 22.5 %芒廷维尤: 22.5 %西宁: 32.4 %西宁: 32.4 %西安: 1.0 %西安: 1.0 %贵阳: 1.0 %贵阳: 1.0 %运城: 6.9 %运城: 6.9 %郑州: 1.0 %郑州: 1.0 %重庆: 2.9 %重庆: 2.9 %其他北京十堰台州宁德宣城常德张家口晋城漯河芒廷维尤西宁西安贵阳运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(1) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return