Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Tianfeng. EXPERIMENT ON THE EFFECTS OF STEEL FIBERS ON THE FLEXURAL TOUGHNESS AND FRACTURE ENERGY OF HIGH-PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 65-68. doi: 10.13204/j.gyjz200705017
Citation: ZHOU Hongwen, DONG Wenjun, ZHOU Bentao. Research on Destructiveness of Dam Failure of Tailings Reservoirs Based on Two-Dimensional Cloud Model[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 229-235. doi: 10.13204/j.gyjzG22072610

Research on Destructiveness of Dam Failure of Tailings Reservoirs Based on Two-Dimensional Cloud Model

doi: 10.13204/j.gyjzG22072610
  • Received Date: 2022-07-26
    Available Online: 2023-03-22
  • This study is designed to accurately assess the probability of impact damage to downstream structures caused by debris flows after the dam failure of tailings reservoirs and the severity of the damage. Specifically, an impact risk assessment system for bridge projects was constructed according to the characteristics of the dam failure disaster of tailings reservoirs, the rheological characteristics of the debris flow after dam failure, and simulation technology. On the basis of this system, the two-dimensional (2D) cloud model theory was employed to generate the probability cloud and the severity cloud. For this purpose, weights were obtained with information entropies. Then, the evaluation cloud map was generated by the backward cloud model, and the left and right half clouds were generated by the standard cloud model. Finally, the similarity between the evaluation cloud and the standard cloud was determined by cloud similarity, and the actual safety status of each tailings reservoir was obtained by investigating the weights. A bridge project under impact damage by the debris flow after dam failure was discussed as an example of empirical research. The results show that the proposed risk assessment index system is highly practical, and the improved 2D cloud model can correct the weakness of the traditional cloud model that it directly removes the data at the interval breakpoint and thereby enhance the accuracy of the evaluation results and the comprehensiveness of the risk assessment process.
  • [1]
    MASCARO I, BENVENUTI B, CORSINI F, et al. Mine wastes at the polymetallic deposit of Fenice Capanne (Southern Tuscany, Italy).Mineralogy, geochemistry, and environmental impact[J]. Environmental Geology, 2001, 41(3/4):417-429.
    [2]
    梅国栋.尾矿库溃坝灾害脆弱性评估指标体系及方法研究[J].中国安全生产科学技术,2012,8(12):11-15.
    [3]
    王仪心,米占宽.尾矿坝溃坝安全风险分析评价方法[J].金属矿山, 2019(6):184-188.
    [4]
    孙鸿昌,郝喆,杨青潮.精细地形下的尾矿坝稳定性及溃坝模拟分析[J].水文地质工程地质, 2022, 49(3):136-144.
    [5]
    辛保泉,万露,耿龙龙,等.尾矿库溃坝室外模型试验及灾害预测分析[J].中国安全生产科学技术,2018,14(5):102-108.
    [6]
    OWEN J R, KEMP D, LEBRE É, et al. Catastrophic tailings dam failures and disaster risk disclosure[J]. International journal of disaster risk reduction, 2020, 42. DOI:10.1016/j.ijdrr.2019. 101361.
    [7]
    DU Z, GE L, NG A H M, et al. Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach[J]. Science of the Total Environment, 2020, 717. DOI:10.1016/j.scitotenv.2020. 137125.
    [8]
    GE W, LI Z, LI W, et al. Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model[J]. Natural Hazards, 2020, 104(2):1641-1653.
    [9]
    TONGLE X, YINGBO W, KANG C. Tailings saturation line prediction based on genetic algorithm and BP neural network[J]. Journal of Intelligent & Fuzzy Systems, 2016, 30(4):1947-1955.
    [10]
    FAN Q, TIAN Z, WANG W. Study on risk assessment and early warning of flood-affected areas when a dam break occurs in a mountain river[J]. Water, 2018, 10(10).DOI: 10.3390/w10101369.
    [11]
    戴剑勇,王雯雯,黄晓庆.基于网络云模型的尾矿库溃坝安全评估[J].安全与环境学报,2022,22(1):1-7.
    [12]
    徐镇凯,刘璇,魏博文,等.基于云模型的尾矿库溃坝风险模糊评价模型[J].南水北调与水利科技,2016,14(6):122-127.
    [13]
    姜洲,黄艳华,吴贤国,等.基于云模型和D-S证据理论的尾矿库失稳溃坝警情评价模型及应用[J].水电能源科学,2016,34(10):47-51.
    [14]
    冯春辉.基于属性拓扑的中医诊断数据因果关系推断方法研究[D].秦皇岛:燕山大学,2017.
    [15]
    陈忠源,戴自航.水库边坡稳定性评价的云模型[J].工程地质学报,2020,28(3):619-625.
    [16]
    代劲,胡彪,王国胤,等.分布轮廓与局部特征融合的云模型不确定性相似度量[J].电子与信息学报, 2022, 44(4):1429-1439.
    [17]
    莫俊文,滕仓国,李甲,等.基于熵权-二维云模型的高铁建设工程系统韧性评价[J].铁道科学与工程学报,2022,19(1):26-33.
  • Relative Articles

    [1]XU Jimin, XING Kuntao, GAO Xiangyu, GUO Xiaohua, WANG Ling. DEGRADATION LAWS OF MECHANICAL PROPERTIES FOR PROFILED STEEL SHEETS IN ACCELERATED CORROSION ENVIRONMENTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 163-168. doi: 10.13204/j.gyjzG201908130001
    [2]ZHANG Xingshuai, WU Yaohua. COMPARATIVE ANALYSIS OF STRUCTURAL REQUIREMENTS FOR DEFORMATION AND OVERLAP FOR PROFILED STEEL SHEET BY CHINESE, AMERICAN AND EUROPEAN STANDARDS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 158-162,136. doi: 10.13204/j.gyjz202002024
    [4]Sun Defa. ANALYSIS OF EFFECTIVE SECTION OF COLD-FORMED THIN-WALL LIPPED CHANNEL PURLINS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 131-135. doi: 10.13204/j.gyjz201502027
    [5]Tong Genshu, Xu Yuanjie, Zhang Lei. ANALYSIS OF GLOBAL STABILITY OF C-PURLINS UNDER WIND SUCTION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 34-37,11. doi: 10.13204/j.gyjz201312005
    [6]Tong Genshu, Xu Yuanjie, Zhang Lei. ANALYSIS OF GLOBAL STABILITY OF COLD-FORMED Z PURLINS UNDER WIND SUCTION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 26-33. doi: 10.13204/j.gyjz201312004
    [7]Tong Genshu. EFFICIENCY OF SAG RODS AS LATERAL SUPPORTS FOR STABILITY OF PURLINS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 52-56,65. doi: 10.13204/j.gyjz201312008
    [8]Tong Genshu, Wu Qiang, Zhang Lei. BENDING AND TWISTING ABOUT A CONSTRAINED AXIS OF Z-SECTION PURLINS WITH ONE SAG ROD AT MIDSPAN[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 1-11. doi: 10.13204/j.gyjz201312001
    [9]Tong Genshu, Wu Qiang, Zhang Lei. BENDING AND TWISTING ABOUT A CONSTRAINED AXIS OF C-SECTION PURLINS WITH ONE SAG ROD AT MIDSPAN[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 12-20. doi: 10.13204/j.gyjz201312002
    [10]Wu Qiang, Tong Genshu, Zhang Lei. ANALYSIS OF TWISTING ABOUT UPPER FLANGE OF C-SECTION PURLIN WITH TWO SAG RODS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 21-25. doi: 10.13204/j.gyjz201312003
    [11]Du Huilin, Tong Genshu, Song Changyong, Zhang Lei. TORSIONAL RESTRAINTS OF CORRUGATED SHEETING TO PURLIN THROUGH SLIPPABLE CLIPS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 34-41. doi: 10.13204/j.gyjz201304007
    [12]Tong Genshu, Wu Qiang. NOTIONAL LOAD ON BOTTOM FLANGE IN STRENGTH CALCULATION OF Z- SHAPED CROSS SECTION PURLIN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 136-142. doi: 10.13204/j.gyjz201204028
    [13]Nie Shaofeng, Wang Wenke, Zhou Tianhua, He Baokang. STUDY ON MECHANICAL BEHAVIOR OF HIGH STRENGTH COLD-FORMED STEEL CONTINUOUS HAT SECTION PURLIN[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 92-94,91. doi: 10.13204/j.gyjz200907025
    [14]Zhang Yankun, Liu Yanghua, Song Xiaoruan. EXPERIMENTAL STUDY ON FLEXURAL BEARING CAPACITY OF PROFILED STEEL SHEET-LIGHT-WEIGHT AGGREGATE CONCRETE FLOOR SLABS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 83-85. doi: 10.13204/j.gyjz200808021
    [15]Liu Yang, Zhang Qilin. EXPERIMENT AND FEM ANALYSIS ON THE SHEAR BEHAVIORS OF PROFILED METAL SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(10): 88-92. doi: 10.13204/j.gyjz200710024
    [16]Han Jinsheng, Cheng Wenrang, Xu Zhaodong, Dong Yuli, Lv Junli. EXPERIMENTAL STUDY ON THE BEHAVIORS OF PROFILED STEEL SHEETING_CONCRETE COMPOSITE SLABS UNDER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 87-90. doi: 10.13204/j.gyjz200603023
    [17]Long Liping, Gu Hongyan, Cui Jia. STATIC BEHAVIOR OF STRESSED SKIN DIAPHRAGM CONNECTED WITH V840 PROFILED SHEET[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 84-85,83. doi: 10.13204/j.gyjz200506024
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.0 %FULLTEXT: 11.0 %META: 89.0 %META: 89.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %其他: 0.7 %其他: 0.7 %Baden: 1.4 %Baden: 1.4 %Brazil: 2.1 %Brazil: 2.1 %Canton: 1.4 %Canton: 1.4 %China: 0.7 %China: 0.7 %United States: 2.1 %United States: 2.1 %[]: 0.7 %[]: 0.7 %上海: 1.4 %上海: 1.4 %临沂: 0.7 %临沂: 0.7 %兰州: 0.7 %兰州: 0.7 %加利福尼亚州: 0.7 %加利福尼亚州: 0.7 %北京: 13.0 %北京: 13.0 %南京: 3.4 %南京: 3.4 %南昌: 1.4 %南昌: 1.4 %南阳: 0.7 %南阳: 0.7 %台州: 0.7 %台州: 0.7 %合肥: 0.7 %合肥: 0.7 %安阳: 2.1 %安阳: 2.1 %广州: 0.7 %广州: 0.7 %廊坊: 0.7 %廊坊: 0.7 %张家口: 0.7 %张家口: 0.7 %成都: 0.7 %成都: 0.7 %承德: 0.7 %承德: 0.7 %昆明: 3.4 %昆明: 3.4 %朝阳: 0.7 %朝阳: 0.7 %杭州: 4.1 %杭州: 4.1 %枣庄: 0.7 %枣庄: 0.7 %武汉: 2.1 %武汉: 2.1 %沈阳: 0.7 %沈阳: 0.7 %洛阳: 2.1 %洛阳: 2.1 %济南: 0.7 %济南: 0.7 %深圳: 4.1 %深圳: 4.1 %温州: 1.4 %温州: 1.4 %湖州: 1.4 %湖州: 1.4 %潍坊: 1.4 %潍坊: 1.4 %石家庄: 2.7 %石家庄: 2.7 %福州: 0.7 %福州: 0.7 %绍兴: 0.7 %绍兴: 0.7 %美国伊利诺斯芝加哥: 0.7 %美国伊利诺斯芝加哥: 0.7 %芒廷维尤: 15.1 %芒廷维尤: 15.1 %芝加哥: 1.4 %芝加哥: 1.4 %衢州: 2.1 %衢州: 2.1 %西宁: 4.1 %西宁: 4.1 %贵阳: 0.7 %贵阳: 0.7 %长沙: 0.7 %长沙: 0.7 %青岛: 0.7 %青岛: 0.7 %高雄: 2.1 %高雄: 2.1 %其他其他BadenBrazilCantonChinaUnited States[]上海临沂兰州加利福尼亚州北京南京南昌南阳台州合肥安阳广州廊坊张家口成都承德昆明朝阳杭州枣庄武汉沈阳洛阳济南深圳温州湖州潍坊石家庄福州绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥衢州西宁贵阳长沙青岛高雄

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return