Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Chen Wei, Zhu Juanli. LOW-CARBON TRANSFORMATION DESIGN OF MODERN INDUSTRIAL MUSEUM IN HANGZHOU[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 134-137,109. doi: 10.13204/j.gyjz201108032
Citation: LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605

Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns

doi: 10.13204/j.gyjzG22072605
  • Received Date: 2022-07-26
  • Concrete-filled stainless steel tubular columns show excellent prospects for application in corrosive environments such as harbor engineering and marine engineering. To further develop the performance of such structures, a composite structure, i. e. steel-reinforced ultra-high performance concrete-filled stainless steel tubular column was proposed in this paper. Meanwhile, six short and eight medium-length column specimens were designed and fabricated with the parameters of diameter to thickness ratio, length to diameter ratio, steel profile content ratios, etc. Axial compression experiments and finite element analysis were executed to investigate the failure mode and failure mechanism of the specimens, as well as the influence of relevant parameters on the mechanical performance of the specimens. The results showed that the bearing capacity and ductility of the specimens increased with the decreasing of the diameter to thickness ratios and length to diameter ratios, and increased with the increding of the steel profile content ratios and strength of the pre-embedded steel profile; the ductility of the specimen decreased with the increase in core concrete strength, but the bearing capacity was the opposite. Based on the experimental and finite element results, a prediction model for the bearing capacity of steel-reinforced ultra-high performance concrete-filled stainless steel tubular was proposed, providing a reference for the engineering application of such structures.
  • [1]
    韩林海.钢管混凝土结构:理论与实践[M].2版.北京:科学出版社,2007.
    [2]
    BEN Y, EHAB E. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns[J]. Journal of Constructional Steel Research, 2005, 62(5):484-492.
    [3]
    ELLOBODY E. Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns[J]. Thin-Walled Structures, 2007, 45(3):259-273.
    [4]
    张纪刚,舒凡,赵铁军,等.不锈钢管中管混凝土海洋平台导管腿轴压性能试验研究[J].建筑结构学报,2018,39(增刊1):279-285.
    [5]
    刘艳芝,邓集钱,谭清华.内嵌十字型钢的方形劲性不锈钢管混凝土柱耐火性能[J].建筑科学与工程学报,2019,36(3):66-73.
    [6]
    李永进,廖飞宇,黄海清.矩形不锈钢管混凝土柱双向偏压力学性能试验研究[J].建筑钢结构进展,2018,20(2):60-66.
    [7]
    张建周,郭旺,安泽宇.型钢-PBL加劲型方不锈钢管混凝土轴压短柱非线性分析[J].建筑结构,2017,47(增刊2):249-254.
    [8]
    代鹏,杨璐,卫璇,等.不锈钢管混凝土短柱轴压承载力试验研究[J].工程力学,2019,36(增刊1):298-305.
    [9]
    马国梁. 不锈钢管再生混凝土轴压和弯曲性能研究[D].大连:大连理工大学,2013.
    [10]
    廖飞宇.圆不锈钢管混凝土轴压力学性能的有限元分析[J].福建农林大学学报(自然科学版),2009,38(6):659-662.
    [11]
    徐晨豪,赵俊亮,金国平.圆不锈钢管混凝土轴压短柱三维有限元分析[J].混凝土,2017(7):44-46,49.
    [12]
    PATEL V, HASSANEIN M, THAI H T, et al. Behaviour of axially loaded circular concrete-filled bimetallic stainless-carbon steel tubular short columns[J]. Engineering Structures, 2017,147:583-597.
    [13]
    乔崎云,张雯雯,曹万林,等.薄壁不锈钢管-钢骨混凝土短柱轴压力学性能试验研究[J].工业建筑,2020,50(2):143-149.
    [14]
    王德辉,史才军,吴林妹.超高性能混凝土在中国的研究和应用[J].硅酸盐通报,2016,35(1):141-149.
    [15]
    韦建刚,罗霞,欧智菁,等.圆高强钢管超高性能混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2020, 41(11): 16-28.
    [16]
    孙墨林. 钢管约束型钢超高强混凝土短柱轴压受力性能研究[D]. 大连:大连理工大学, 2017.
    [17]
    中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范:GB 50936—2014[S]. 北京:中国建筑工业出版社, 2014.
    [18]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社, 2021.
    [19]
    中国工程建设标准化协会. 超高性能混凝土(UHPC)技术要求:T/CECS 10107—2020[S]. 北京:中国计划出版社, 2020.
    [20]
    陆纪平. FRP约束超高性能混凝土受压性能[D]. 南京:东南大学, 2020.
    [21]
    RAMBERG W, WILLIAM R O. Description of stress-strain curves by three parameters:No.NACA-TN-902[R]. National Advisory Committee for Aeronautics, Technical Note, 1943.
    [22]
    BSI. Eurocode 3-Design of steel structures-part 1-4: general rules-supplementary rules for stainless steels:EN 1993-1-4[S].UK: British Standards Institution, 2006.
    [23]
    MANDER J, PRIESTLEY M. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
    [24]
    GRAYBEAL B A. Compressive behavior of ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2007, 104(2):146.
    [25]
    LIM J C, OZBAKKALOGLU T. Stress-strain model for normal-and light-weight concretes under uniaxial and triaxial compression[J]. Construction & Building Materials, 2014, 71: 492-509.
    [26]
    AHMED M, LIANG Q Q, PATEL V I, et al. Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling[J]. Engineering Structures, 2018,175:13-26.
    [27]
    LIANG Q Q. Performance-based analysis of concrete-filled steel tubular beam-columns, part I: theory and algorithms[J]. Journal of Constructional Steel Research, 2009, 65(2):363-372.
    [28]
    LU Q R, XU L H, CHI Y, et al. A novel analysis-oriented theoretical model for steel tube confined ultra-high performance concrete[J/OL]. Composite Structures, 2021,264[2021-02-23].https://doi.org/10.1016/j.compstruct.2021.113713.
    [29]
    HU H T, HUANG C S, WU M H, et al. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect[J]. Journal of Structural Engineering, 2003, 129(10):1322-1329.
    [30]
    LIANG Q Q, FRAGOMENI S. Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading[J]. Journal of Constructional Steel Research, 2009, 65(12):2186-2196.
    [31]
    TANG J L, HINO S I, KURODA I, et al. Modeling of stress-strain relationships for steel and concrete in concrete filled circular steel tubular columns[J]. Steel Construction Engineering, 1996, 3(11):35-46.
    [32]
    HUANG W, FAN Z C, SHEN P L, et al. Experimental and numerical study on the compressive behavior of micro-expansive ultra-high-performance concrete-filled steel tube columns[J/OL].Construction and Building Materials, 2020,254[2020-04-30].https://doi.org/10.1016/j.conbuildmat.2020.119150.
    [33]
    HAN L H, YAO G H, ZHONG T. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-Walled Structures, 2007, 45(1): 24-36.
    [34]
    TAN Q, GARDNER L, HAN L H, et al. Fire performance of steel reinforced concrete-filled stainless steel tubular (CFSST) columns with square cross-sections[J/OL]. Thin-Walled Structures, 2019,143[2019-05-26].https://doi.org/10.1016/j.tws.2019.106197.
    [35]
    GARDNER L, NETHERCOT D A. Numerical modeling of stainless steel structural components: a consistent approach[J]. Journal of Structural Engineering, 2004,130: 1586-1601.
  • Relative Articles

    [1]ZHAO Long, ZHAO Wei, YAO Hui, CHEN Jingheng, ZHANG Dongfeng, WU Yuyan. Research on Performance-Based Design of Residential Energy Saving Based on Solar Energy Utilization[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 57-64,157. doi: 10.13204/j.gyjzG22112904
    [2]GAO Bo, ZHANG Jianrui, ZHANG Yantao. EXPLORATION AND ANALYSIS OF EUROPEAN URBAN BUILDING DESIGN:TAKING THREE BUILDINGS IN BRITAIN AND GERMANY AS EXAMPLES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 198-203. doi: 10.13204/j.gyjzG19112901
    [3]Hong Tao, Cui Senmiao. PROTECTION AND DEVELOPMENT OF HUIZHOU RURAL SETTLEMENTS IN PROCESS OF URBANIZATION[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 1-4. doi: 10.13204/j.gyjz201405001
    [4]Xue Suduo, Zhang Yigang, Cao Zi, Li Xiongyan. PROSPECT AND FURTHER DEVELOPMENT OF SEISMIC RESEARCH ON SPATIAL STRUCTURES OVER LAST THIRTY YEARS IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 105-116. doi: 10.13204/j.gyjz201306022
    [5]Du Xiaohui, Xia Haishan. EXPLORATION OF INTEGRATED DESIGN OF SOLAR COLLECTING ROOF OF HIGH-RISE RESIDENTIAL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 5-9,26. doi: 10.13204/j.gyjz201202002
    [6]Li Wei, Fei Kai, Zhen Lanping, Huang Xiaozhen. EXPLORATION OF DEVELOPMENT MODEL OF URBAN AND RURAL ECOLOGICAL ARCHITECTURES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 68-70,67. doi: 10.13204/j.gyjz201203014
    [7]Wang Runsheng, Liu Huijun. THE ANALYSIS OF THE DEVELOPMENT STRATEGIES OF THE PRINCIPLE OF ADAPTING TO SURROUNDING CONDITIONS IN ECO-ARCHITECTURE DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 51-54,58. doi: 10.13204/j.gyjz201110013
    [8]Wang Wei, Wei Chunyu, Song Mingxing. ARCHITECTURAL DESIGN OF THE OFFICE BUILDING FOR CHANGFENG POWER LIMITED COMPANY[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 42-45. doi: 10.13204/j.gyjz201004010
    [9]Yu Tianqi, Mei Hongyuan, Fei Teng. RESEARCH ON SOFTENING OF ECOLOGICAL ARCHITECTURAL SURFACE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 37-40. doi: 10.13204/j.gyjz201010009
    [10]Yu Hancheng, Dang Jianguo. INVESTIGATION AND ANALYSIS OF USE OF PASSIVE SOLAR HEATING TECHNOLOGY IN ARCTIC AREAS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 22-24,33. doi: 10.13204/j.gyjz201012007
    [11]Zhuang Yu, Zhang Xiuli, Cui Zhenglong. THE DESIGN AND STUDY OF NORTHEAST RURAL SOLAR HOUSE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 19-21. doi: 10.13204/j.gyjz201012006
    [12]Gu Yan, Zhang Yaping. MAKING OF HIGH-QUALITY INDUSTRIAL ARCHITECTURES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 3-4. doi: 10.13204/j.gyjz200910002
    [13]Di Peng, Wu Haojun, Li Baiyi. HOUSING ENERGY CONSERVATION STRATEGY IN NEW COUNTRYSIDE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 118-120,5. doi: 10.13204/j.gyjz200811030
    [14]Lu Wenjun. RESEARCH OF SOLAR ENERGY TECHNIQUE APPLIED IN 90 SQUARE METERS RESIDENTIAL BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 20-22,26. doi: 10.13204/j.gyjz200806007
    [15]Xie Kong, Bai Mei, Deng Kang. COOPERATINGDESIGN BETWEEN SOLAR ENERGY AND ARCHITECTURE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 114-115118. doi: 10.13204/j.gyjz200802030
    [16]Chen Zi-qian, Zheng Hong-fei, Huang Meng. CASE ANALYSIS AND STUDY ON THE INTEGRATION OF SOLAR SYSTEM WITH BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 131-133. doi: 10.13204/j.gyjz200712032
    [17]Zheng Dong-jun, Li Yan. ECOLOGY,FUNCTION AND FORM——EXPLORATION OF THE ARCHITECTURAL DESIGN OF EXPRESSWAY SERVING AREA[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 105-107. doi: 10.13204/j.gyjz200607030
    [18]Zhao Xiang. EXPLORATION ON THE DESIGN POLICY PRACTICE OF ECOLOGICAL BUILDING AND EXPLORATION OF ITS DESIGN POLICY[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 28-31. doi: 10.13204/j.gyjz200504009
    [19]Zhao Xiaolong, Meng Haining, Gao Hui, Ge Yanping. THE DEVELOPMENT AND RESEARCH IN DESIGNING OF HTE HOUSING DWELLING SIZE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 29-31,19. doi: 10.13204/j.gyjz200509008
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 85.6 %META: 85.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.4 %其他: 14.4 %China: 3.3 %China: 3.3 %上海: 1.1 %上海: 1.1 %北京: 12.2 %北京: 12.2 %张家口: 3.3 %张家口: 3.3 %扬州: 1.1 %扬州: 1.1 %漯河: 1.1 %漯河: 1.1 %白银: 2.2 %白银: 2.2 %芒廷维尤: 15.6 %芒廷维尤: 15.6 %西宁: 42.2 %西宁: 42.2 %重庆: 1.1 %重庆: 1.1 %阳泉: 2.2 %阳泉: 2.2 %其他China上海北京张家口扬州漯河白银芒廷维尤西宁重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return