Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QIN Pengfei. Study on Splitting Grouting Mechanisms in Sand Based on Nonlinear Compaction Effect[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 198-203,61. doi: 10.13204/j.gyjzG22072408
Citation: QIN Pengfei. Study on Splitting Grouting Mechanisms in Sand Based on Nonlinear Compaction Effect[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 198-203,61. doi: 10.13204/j.gyjzG22072408

Study on Splitting Grouting Mechanisms in Sand Based on Nonlinear Compaction Effect

doi: 10.13204/j.gyjzG22072408
  • Received Date: 2022-07-24
    Available Online: 2024-02-28
  • The splitting grouting in sand is a dynamic coupling process between slurry and soil. The slurry diffusion has the characteristics of invisibility, complexity and randomness. The research on the splitting grouting mechanism still needs to be strengthened at present. Through confined compression tests, the macro and micro structure characteristics and stress transfer modes of sand were explored. It was found that the particle fragmentation and clay particle content were the main factors inflerencing the compaction effect of sand, the particle fragmentation was positively correlated with the compaction effect, and the clay particle content was negatively correlated with the compaction effect. When the content of clay particles exceed the critical value, the macro and micro structure of sand would change qualitatively, and the nonlinear compaction effect was conspicuously enhanced. The nonlinear compaction process of sand was described based on a quadratic function model, which was characterized by the initial compression modulus Et of sand and the ultimate strain εu under the final load, and the model was of a clear phyical concept and easliy measured parameters. The compaction effect of sand had a significant impact on slurry diffusion distance, splitting width and slurry pressure distribution. The splitting grouting analysis method considering the self-compaction characteristics of sand could further deepen the understanding of the mechanism for splitting grouting in sand.
  • [1]
    LIU B, ZHANG D W, YANG C, et al. Long-term performance of metro tunnels induced by adjacent large deep excavation and protective measures in Nanjing silty clay[J]. Tunneling and Underground Space Technology, 2020, 95:103-147.
    [2]
    ZHANG D M, LIU Z S, WANG R L, et al. Influence of grouting on rehabilitation of an over-deformed operating shield tunnel lining in soft clay[J]. Acta Geotechnica, 2019, 14(4):1227-1247.
    [3]
    PARK D, OH J. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2018, 233:63-75.
    [4]
    张庆松,王洪波,刘人太,等.考虑浆液扩散路径的多孔介质渗透注浆机理研究[J].岩土工程学报,2018,40(5):918-924.
    [5]
    魏久传,韩承豪,张伟杰,等. 基于步进式算法的裂隙注浆扩散机制研究[J]. 岩土力学,2019,40(3):913-925.
    [6]
    王复明,范永丰,郭成超.非水反应类高聚物注浆渗漏水处治工程实践[J].水力发电学报,2018,37(10):1-11.
    [7]
    李召峰,李术才,刘人太,等.富水破碎岩体注浆加固实验与机制研究[J]. 岩石力学与工程学报,2017,36(1):198-207.
    [8]
    张庆松, 张连震, 张霄, 等.基于浆液黏度时空变化的水平裂隙岩体注浆扩散机制[J].岩石力学与工程学报, 2016, 34(6):1198-1210.
    [9]
    TANI M E, STILLE H K. Grout Spread and Injection Period of Silica Solution and Cement Mix in Rock Fractures[J]. Rock Mechanics and Rock Engineering, 2017, 50(9):2365-2380.
    [10]
    王腾,周茗如,马连生, 等.基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J].吉林大学学报(工学版),2017,47(5):1472-1481.
    [11]
    RASOULI R,HAYASHI K,ZEN K. Controlled permeation grouting method for mitigation of liquefaction[J]. Journal of Geotechnical and Geoenvironmental Engineering,2016,142(11):1-11.
    [12]
    秦鹏飞,钟宏伟,刘坚,等.考虑浆土应力耦合作用的劈裂注浆机理分析[J].西南交通大学学报,2022,37(12):211-218.
    [13]
    李晓龙,陈灿,王贻森,等.自膨胀高聚物浆液劈裂注浆仿真方法研究[J].土木工程学报,2023,40(11):419-427.
    [14]
    张连震,李志鹏,张庆松,等.基于土体非线性压密效应的劈裂注浆机制分析[J].岩石力学与工程学报,2016,35(7):1483-1493.
    [15]
    YE F, GOU C F, SUN H D, et al. Model test study on effective ratio of segment transverse bending rigidity of shield tunnel[J]. Tunneling and Underground Space Technology, 2014, 41:193-205.
    [16]
    WANG D Y, XING X M, QU H H, et al. Simulated radial expansion and heave caused by compaction grouting in noncohesive soils[J/OL]. International Journal of Geo-mechanics, 2015,15(4)[2022-07-24].https://doi.org/10.1061/(ASCE)GM.1943-5622.0000333.
    [17]
    张庆松,张连震,刘人太,等.基于"浆-土"界面应力耦合效应的劈裂注浆理论研究[J].岩土工程学报,2016,38(2):323-330.
    [18]
    李鹏,张庆松,王倩,等.隧道泥质断层多序注浆动态劈裂扩散规律[J].中国公路学报,2018,31(10):328-338.
    [19]
    姚茂宏,谢长岭,程少振,等.双孔劈裂条件下地应力及孔间应力的耦合分析[J].北京交通大学学报,2021,48(7):370-379.
    [20]
    蔡德国,叶飞,曹凯,等.砂性地层盾构隧道壁后注浆浆液扩散室内试验[J].中国公路学报,2018,31(10):274-283.
    [21]
    QI Yongjie, WEI Gang, FENG Feifan, et al. Method of calculating the compensation for rectifying the horizontal displacement of existing tunnels by grouting[J/OL]. Applied Sciences, 2020, 11(1)[2022-07-24].https://.doi.org/10.3390/app11010040.
    [22]
    陈湘生,付艳斌,吕桂阳,等.基于小孔扩张弹塑性理论的注浆起始劈裂压力研究[J].中国公路学报,2020,33(12):154-163.
    [23]
    刘向阳,程桦,黎明镜,等.基于浆液流变性的深埋岩层纵向劈裂注浆理论研究[J].岩土力学,2021,42(5):1373-1380.
    [24]
    程少振,陈铁林,郭玮卿.土体劈裂注浆过程的数值模拟及浆脉形态影响因素分析[J].岩土工程学报,2019,41(3):1667-1676.
    [25]
    PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud:Recovery of Fe, Al, Ti, and Si[J].Minerals Engineering, 2016, 99:8-18.
    [26]
    张淼,邹金锋,陈嘉祺,等.非对称荷载作用下土体劈裂注浆压力分析[J].岩土力学,2013,34(8):2255-2263.
    [27]
    LIU Xian, DONG Zibo, BAI Yun, et al. Investigation of the structural effect induced by stagger joints in segmental tunnel linings:first results from full-scale ring tests[J]. Tunneling and Underground Space Technology, 2017, 66:1-18.
    [28]
    张冬梅,邹伟彪,闫静雅.软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报,2014,36(12):2203-2212.
    [29]
    张连震,张庆松,刘人太,等.基于浆液-岩体耦合效应的微裂隙岩体注浆理论研究[J].岩土工程学报,2018,40(11):2003-2011.
    [30]
    郑刚,潘军,程雪松,等.基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J].岩土工程学报,2019,41(7):1181-1190.
    [31]
    王晓玲,刘长欣,李瑞金,等.大坝基岩单裂隙灌浆流固耦合模拟研究[J].天津大学学报(自然科学版),2017,50(10):1037-1046.
    [32]
    龚晓南,朱旻,高翔,等.基于流体体积法的劈裂注浆有限元分析[J].岩土力学,2019,40(11):1-11.
    [33]
    CHEN T L, ZHANG L Y, ZHANG D L. An FEM/VOF hybrid formulation for fracture grouting modelling[J]. Computers and Geotechnics, 2014, 58(58):14-27.
  • Relative Articles

    [1]JIN Yunfei, LIU Yu, YE Fei, ZHANG Xiaoyong, JIN Tianwei. Research on Moment Redistribution of Prestressed Steel Reinforced Concrete Continuous Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 77-83. doi: 10.3724/j.gyjzG21081606
    [2]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [3]LIANG Chaofeng, FU Yangyan, ZHAO Jiangxia, GAO Yueqing, WANG Chunhui. Damping Properties of Rubber Modified Recycled Aggregate Concrete Subjected to Different Damage Degrees[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 194-200,146. doi: 10.13204/j.gyjzG21111009
    [4]ZHAO Xinli, HE Haoxiang, YAN Weiming, CHENG Shitao. SEISMIC VULNERABILITY ASSESSMENTS FOR OLD BUILDINGS BY DIFFERENT VERSIONS OF SEISMIC DESIGN CRITERIA AND DURABILITY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 113-120,201. doi: 10.13204/j.gyjzG21020604
    [5]YANG Zhao, YANG Quan, BAO Liang. EXPERIMENTAL STUDY ON SEISMIC DAMAGE OF INTERIOR JOINTS IN INTEGRALLY PREFABRICATED REINFORCED CONCRETE FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 54-60. doi: 10.13204/j.gyjzG20190926006
    [6]HUANG Xin, LI Yi, ZHU Xudong, HU Xueying, LYU Yang. DAMAGE ANALYSIS OF HIGH-RISE BUILDING STRUCTURES WITH ASYMMETRIC VERTICAL SETBACKS UNDER RARE EARTHQUAKE ACTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 79-84. doi: 10.13204/j.gyjz202006013
    [8]Li Hongxing, Gao Wei, Zhao Chunlian, Li Guoqiang, Dong Lühe, Sun Feifei. APPLICATION OF BUCKLING-RESTRAINED BRACES ( BRB) IN RC FRAME-BENT MAIN BUILDING STRUCTURE FOR LARGE THERMAL POWER PLANTS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 98-102.
    [9]Zhang Teng, Wu Xiaohan, He Jinsheng. ELASTO-PLASTIC TIME HISTORY ANALYSIS OF STRUCTURE AND CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 90-94. doi: 10.13204/j.gyjz201406021
    [10]Xiong Xueyu, Gao Feng, Xu Xiaoming. THEORETICAL RESEARCH ON DESIGN OF PSRC STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 113-117. doi: 10.13204/j.gyjz201204024
    [11]Yang Junfen, Gu Qiang, Wan Hong, Peng Yiliang. DISCUSSION ON THE REMAINING BEARING CAPACITY OF COMPRESSIVE BRACES AFTER BUCKLING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 124-128. doi: 10.13204/j.gyjz201104026
    [12]Xiong Xueyu, Huang Weiyi, Gao Feng. EXPERIMENTAL STUDY ON SHORT-TERM STIFFNESS OF PRESTRESSED STEEL REINFORCED CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 30-33,11. doi: 10.13204/j.gyjz201112007
    [13]Xiong Xueyu, Gao Feng, Li Yaming. EXPERIMENT AND CALCULATION OF NORMAL SECTION BENDING CAPACITY OF PRESTRESSED STEEL REINFORCED CONCRETE FRAME BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 24-29. doi: 10.13204/j.gyjz201112006
    [14]Bai Xiaohong, Bai Guoliang. EXPERIMENTAL AND THEORETICAL STUDY ON THE DEFORMATION PROPERTY OF THE FRAME-BENT STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 31-35. doi: 10.13204/j.gyjz201007010
    [15]Xin Li, Liang Xingwen. DIRECT DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF HIGH-RISE BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 6-10,53. doi: 10.13204/j.gyjz200807002
    [16]Duan Hongxia, Li Zhengliang. RESEARCH ON DESIGN MEASURES FOR SEISMIC RESISTANCE OF RC MEGA-FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 22-26. doi: 10.13204/j.gyjz200601008
    [17]Qin Cong-lv, Qian Lei, Gan Gang, Zhang Ai-hui. SEISMIC DESIGN OF AN APARTMENT BUILDING WITH BOTTOM WEAK STORY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 36-38. doi: 10.13204/j.gyjz200610011
    [18]Fu Chuanguo, Lou Yu, Jiang Yongsheng. ANALYSIS AND DISCUSSION ON LAYOUT SCHEME OF PRESTRESSED BARS FOR TRANSFER STRUCTURE WITH LARGE-SPAN LAMINATED OPEN-WEB TRUSS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 72-75. doi: 10.13204/j.gyjz200401021
  • Cited by

    Periodical cited type(2)

    1. 韩天成,梁书亭,朱筱俊,王文康,杨简. 大跨度预应力型钢混凝土楼盖竖向受力性能分析. 东南大学学报(自然科学版). 2023(02): 218-228 .
    2. 张宇本,周明荣,罗志敏. 型钢-混凝土组合柱的抗震性能及其影响因素研究. 工程抗震与加固改造. 2023(05): 1-10 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.5 %FULLTEXT: 5.5 %META: 88.5 %META: 88.5 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %China: 4.2 %China: 4.2 %[]: 0.6 %[]: 0.6 %上海: 7.3 %上海: 7.3 %保定: 0.6 %保定: 0.6 %北京: 12.7 %北京: 12.7 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.6 %呼和浩特: 0.6 %大连: 1.2 %大连: 1.2 %宿州: 0.6 %宿州: 0.6 %常德: 1.2 %常德: 1.2 %张家口: 2.4 %张家口: 2.4 %成都: 1.2 %成都: 1.2 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %柳州: 1.8 %柳州: 1.8 %沈阳: 1.8 %沈阳: 1.8 %济宁: 0.6 %济宁: 0.6 %深圳: 1.8 %深圳: 1.8 %温州: 0.6 %温州: 0.6 %福州: 0.6 %福州: 0.6 %绍兴: 0.6 %绍兴: 0.6 %舟山: 0.6 %舟山: 0.6 %芒廷维尤: 12.1 %芒廷维尤: 12.1 %西宁: 7.9 %西宁: 7.9 %西安: 3.6 %西安: 3.6 %贵阳: 0.6 %贵阳: 0.6 %达州: 2.4 %达州: 2.4 %运城: 9.7 %运城: 9.7 %邯郸: 0.6 %邯郸: 0.6 %郑州: 2.4 %郑州: 2.4 %重庆: 0.6 %重庆: 0.6 %长沙: 1.2 %长沙: 1.2 %其他China[]上海保定北京合肥呼和浩特大连宿州常德张家口成都昆明晋城朝阳柳州沈阳济宁深圳温州福州绍兴舟山芒廷维尤西宁西安贵阳达州运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(1) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return