Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yang, LIU Chong, WANG Lixia. Research on Health Monitoring of Frame Shear Wall Structures Based on Wavelet Packet Transform[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 211-218. doi: 10.13204/j.gyjzG22071916
Citation: LU Peng, ZHAO Tiansong, WANG Jian, ZHAO Lei, CHANG Haosong, ZHENG Yun. Review on Damage Identification and Health Monitoring of Steel Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 22-27. doi: 10.13204/j.gyjzG22071401

Review on Damage Identification and Health Monitoring of Steel Structures Based on Computer Vision

doi: 10.13204/j.gyjzG22071401
  • Received Date: 2022-07-14
    Available Online: 2023-03-22
  • Steel structures suffer from surface damage all the time due to their material properties and insufficient daily management. With the development of digital information technology, computer vision techniques have become key means in damage identification and health monitoring of steel structures. This paper presented the advances of computer vision techniques in damage and health monitoring of steel structures and discussed the identification techniques for surface corrosion damage, weld joint damage, and bolt connection damage of steel structures and their health monitoring. Moreover, it also predicted the development trends of damage identification and health monitoring techniques based on computer vision for steel structures.
  • [1]
    仇智, 罗亚冉. 钢结构建筑的发展现状及前景分析[J]. 产业与科技论坛, 2011, 10(2):55-56.
    [2]
    张兴斌, 杨昕光, 潘蓉,等. 土木工程智能化监测评估系统的理论研究及应用[J]. 工业建筑, 2021, 51(12):102-106.
    [3]
    WANG N, ZHAO Q, LI S, et al. Damage classification for masonry historic structures using convolutional neural networks based on still images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12):1073-1089.
    [4]
    周奎, 王琦, 刘卫东, 等. 土木工程结构健康监测的研究进展综述[J]. 工业建筑, 2009, 39(3):96-102.
    [5]
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-44.
    [6]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998,86(11):2278-324.
    [7]
    WU S, ZHONG S, LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools and Applications, 2017, 77(9):10437-10453.
    [8]
    ATHA D J, JAHANSHAHI M R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection[J]. Structural Health Monitoring, 2017, 17(5):1110-1128.
    [9]
    AHUJA S K, SHUKLA M K. A survey of computer vision based corrosion detection approaches, information and communication technology for intelligent systems (ICTIS 2017):Volume 2[M]. 2018:55-63.
    [10]
    CHOI K Y, KIM S S. Morphological analysis and classification of types of surface corrosion damage by digital image processing[J]. Corrosion Science, 2005, 47(1):1-15.
    [11]
    JAHANSHAHI M R, MASRI S F. Parametric performance evaluation of wavelet-based corrosion detection algorithms for condition assessment of civil infrastructure systems[J]. Journal of Computing in Civil Engineering, 2013, 27(4):345-357.
    [12]
    CHEN P H, SHEN H K, LEI C Y, et al. Fourier-transform-based method for automated steel bridge coating defect recognition[J]. Procedia Engineering, 2011, 14:470-476.
    [13]
    CHEN P H, SHEN H K, LEI C Y, et al. Support-vector-machine-based method for automated steel bridge rust assessment[J]. Automation in Construction, 2012, 23:9-19.
    [14]
    XU J, GUI C, HAN Q. Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10):1160-1174.
    [15]
    DONG C, LI L, YAN J, et al. Pixel-level fatigue crack segmentation in large-scale images of steel structures using an encoder-decoder network[J/OL]. Sensors (Basel), 2021, 21(12).https://doi.org/10.3390/s21124135.
    [16]
    QIAO W, MA B, LIU Q, et al. Computer vision-based bridge damage detection using deep convolutional networks with expectation maximum attention module[J/OL]. Sensors (Basel), 2021, 21(3).https://doi.org/10.3390/s21030824.
    [17]
    XU Y, BAO Y, CHEN J, et al. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images[J]. Structural Health Monitoring, 2018, 18(3):653-674.
    [18]
    XU Y, LI S, ZHANG D, et al. Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images[J/OL]. Structural Control and Health Monitoring, 2018, 25(2).https://doi.org/10.1002/stc.2075.
    [19]
    DUNG C V, SEKIYA H, HIRANO S, et al. A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks[J]. Automation in Construction, 2019, 102:217-229.
    [20]
    RAMANA L, CHOI W, CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J].Structural Health Monitoring, 2018, 18(2):422-434.
    [21]
    RAMANA L, CHOI W, CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structural Health Monitoring, 2018, 18(2):422-434.
    [22]
    ZHOU J, HUO L, SONG G, et al. Deep learning-based visual inspection for the delayed brittle fracture of high-strength bolts in long-span steel bridges[C]//2019 International Conference on Image and Video Processing, and Artificial Intelligence, 2019.
    [23]
    ZHOU J, HUO L, WANG H. Computer vision-based detection for delayed fracture of bolts in steel bridges[J]. Journal of Sensors, 2021, 2021:1-12.
    [24]
    雷素素, 刘宇飞, 段先军, 等. 复杂大跨空间钢结构施工过程综合监测技术研究[J]. 工程力学, 2018, 35(12):203-211.
    [25]
    TENG S, CHEN G, LIU G, et al. Modal strain energy-based structural damage detection using convolutional neural networks[J]. Applied Sciences, 2019, 9(16):366-371.
    [26]
    刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4):46-53.
    [27]
    卓德兵, 曹晖. 基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别[J]. 工程力学, 2021, 38(9):228-238.
    [28]
    PAL J, SIKDAR S, BANERJEE S. A deep-learning approach for health monitoring of a steel frame structure with bolted connections[J/OL]. Structural Control and Health Monitoring, 2021, 29(2).https://doi.org/10.1002/stc.2873.
    [29]
    PEREZ-PEREZ Y, GOLPARVAR-FARD M, EL-RAYES K. Semantic and geometric labeling for enhanced 3D point cloud segmentation[C]//Proceedings of the 2016 Construction Research Congress, U.S.:2016:2542-2552.
    [30]
    GUO M, SUN M, PAN D, et al. High-precision detection method for large and complex steel structures based on global registration algorithm and automatic point cloud generation[J/OL]. Measurement, 2021, 172.https://doi.org/10. 1016/j.measurement.2020.108765.
    [31]
    魏思航, 刘宇飞, 刘家豪. 基于无人机与数字图像法的混凝土结构表面裂缝检测应用研究[J]. 特种结构, 2020, 37(5):107-111.
    [32]
    CHEN Q, WEN X, WU F, et al. Defect detection and health monitoring of steel structure based on UAV integrated with image processing system[J/OL]. Journal of Physics:Conference Series, 2019, 1176.https://doi.org/10.1088/1742-6596/1176/5/052074.
    [33]
    HAN Q, ZHAO N, XU J. Recognition and location of steel structure surface corrosion based on unmanned aerial vehicle images[J]. Journal of Civil Structural Health Monitoring, 2021, 11(5):1375-1392.
    [34]
    HAN Q, LIU X, XU J. Detection and location of steel structure surface cracks based on unmanned aerial vehicle images[J/OL]. Journal of Building Engineering, 2022, 50.https://doi.org/10.1016/j.jobe.2022.104098.
    [35]
    金明辉.公路勘测设计[M]. 北京:人民交通出版社, 2014.
    [36]
    HUSSAIN M, CHEN D, CHENG A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80:91-106. 2209000020800606林拥军.fbd
  • Relative Articles

    [1]BU Yang, ZHANG Ping. Finite Element Analysis on Seismic Performance of Buckling-Restrained Butterfly-Shaped Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 62-69,208. doi: 10.13204/j.gyjzG20041801
    [2]WANG Weiyong, YANG Qibo, LIANG Zhanshuo, OU Ying, JIANG Xianchun. Seismic Response of the Joint Between Steel Truss Concrete Composite Shear Wall and Steel Coupling Beam[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 39-48. doi: 10.13204/j.gyjzG22040401
    [3]LI Yun, LIU Yang, ZHANG Xianlong, HE Fujiangshan, FENG Ruoqiang. Research on Hysteretic Performance of Grid-Tube Double Steel Plate Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 32-38. doi: 10.13204/j.gyjzG21081212
    [4]BAI Zhengxian, CUI Hu, JIANG Ziqin, SHEN Cunjie, SU Lei, ZHANG Wenying. Influence of Different Parameters on Hysteretic Behavior of Corrugated Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 24-31,103. doi: 10.13204/j.gyjzG21122105
    [5]ZHENG, Liang, QIN, Cheng, ZHANG, Dapeng. RESEARCH ON STRUCTURAL INFLUENCING COEFFICIENT OF STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 154-161. doi: 10.13204/j.gyjz202001025
    [6]WANG Wei, HAN Bin, WANG Wanzhi, HUANG Yuanzhao, HOU Mingyue. RESEARCH ON STIFFNESS MATCHING RELATIONSHIP BETWEEN EMBEDDED STEEL PLATE AND REPLACEABLE TOE DAMPER IN CORRUGATED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 111-117,87. doi: 10.13204/j.gyjz202004020
    [7]Zhao Jianli, Zhao Wei, He Huanhuan, Dong Changchun. EXPERIMENTAL RESEARCH ON VERTICALLY STIFFENED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 119-124. doi: 10.13204/j.gyjz201505026
    [8]Yuan Changlu Hao Jiping Fang Chen, . SEISMIC BEHAVIOR OF STEEL FRAME-STEEL PLATE SHEAR WALL SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 142-147. doi: 10.13204/j.gyjz201507029
    [9]Zhao Wei, Duan Qingxing, Tong Genshu. STUDY OF ELASTIC-PLASTIC DESIGN TECHNOLOGY OF UNSTIFFENED STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 146-151.
    [10]Wu Jingshu, Zhang Xinbin, He Mi. INFLUENCE OF OPENING ON SEISMIC BEHAVIOR OF STEEL PLATE REINFORCED CONCRETE SHEAR WALLS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 30-35. doi: 10.13204/j.gyjz2001412006
    [11]Yuan Xiaojing, Zhao Wei. EXPERIMENT RESEARCH ON STEEL PLATE SHEAR WALL WITH HORIZONTAL STIFFENER[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 123-127. doi: 10.13204/j.gyjz2001412020
    [12]Tong Genshu, Tang Xuemei, Zhang Lei. ELASTIC STABILITY OF STEEL PLATE SHEAR WALL WITH CROSS STIFFENERS IN SHEAR[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 122-129. doi: 10.13204/j.gyjz201406027
    [13]Qian Kuan, Sun Yunlun, Yang Fang, Pan Rong, Tian Chunyu. EXPERIMENTAL STUDY OF MECHANICAL BEHAVIOR STEEL-CONCRETE SANDWICH COMPOSITE SHEAR WALLS UNDER COMPOSITE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 12-16. doi: 10.13204/j.gyjz2001412003
    [14]Zhao Wei, Zhou Guangen, Wu Chong, . ELASTIC BUCKLING PROPERTY OF STEEL PLATE SHEAR WALL WITH VERTICAL STIFFENERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 104-107. doi: 10.13204/j.gyjz201301023
    [15]Zheng Yue, Zhao Wei. ELASTIC BUCKLING ANALYSIS OF STEEL PLATE SHEAR WALL WITH ELASTIC RESTRAINT OF TWO SIDES UNDER THE ACTION OF SHEAR AND COMPRESSION FORCE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 124-126,130. doi: 10.13204/j.gyjz201109028
    [16]Li Ran, Guo Lanhui, Zhang Sumei. HYSTERETIC ANALYSIS OF STRENGTHENED STEEL PLATE SHEAR WALL CONNECTED WITH FRAME BEAMS ONLY[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 107-113. doi: 10.13204/j.gyjz201107024
    [17]Li Yan, Hao Jiping, Zhou Qi, Xie Qi, Guo Hongchao. EXPERIMENTAL STUDY AND FINITE ELEMENT ANALYSIS OF STEEL PLATE SHEAR WALL WITH UNSTIFFENED WELDED-BOLTED CONNECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 101-106,100. doi: 10.13204/j.gyjz201107023
    [18]Zheng Yue, Zhao Wei. ELASTIC BUCKLING PROPERTIES OF STEEL PLATE SHEAR WALL UNDER SHEAR AND PRESSURE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 105-109. doi: 10.13204/j.gyjz201108025
    [19]Xu Man, Wang Yuyin, Zhang Sumei. SHERA RESISTANCE BEHAVIOR OF TWO-SIDE CONNECTED STEEL-PLATE SHEAR WALL (SPSW)[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 107-111. doi: 10.13204/j.gyjz200903028
    [20]Liao Fei-yu, Tao Zhong. EXPERIMENTS ON BEHAVIOR OF RC SHEAR WALLS FRAMED WITH DIFFERENT KINDS OF COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 31-34,118. doi: 10.13204/j.gyjz200712007
  • Cited by

    Periodical cited type(4)

    1. 覃秋冬,陆琨,陶忠,李鑫鑫. 新型高延性混凝土-压型钢板组合楼板承载力试验研究. 工业安全与环保. 2024(02): 1-6 .
    2. 吕静静,赵艺园. 高延性混凝土材料在某农用住宅建筑抗震加固设计中的应用. 中国建筑装饰装修. 2024(08): 113-115 .
    3. 黄国清. 新型玻璃纤维GFRP筋聚合砂浆板加固混凝土梁的粘接性能研究. 粘接. 2023(12): 96-99 .
    4. 田绍博,康洪震,乔瀚林. 高延性混凝土加固技术在砖混砌体结构的应用研究. 砖瓦. 2022(12): 73-75 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.5 %FULLTEXT: 22.5 %META: 77.5 %META: 77.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.6 %其他: 18.6 %北京: 1.0 %北京: 1.0 %十堰: 1.0 %十堰: 1.0 %台州: 1.0 %台州: 1.0 %宁德: 2.9 %宁德: 2.9 %宣城: 1.0 %宣城: 1.0 %常德: 2.0 %常德: 2.0 %张家口: 2.9 %张家口: 2.9 %晋城: 1.0 %晋城: 1.0 %漯河: 1.0 %漯河: 1.0 %芒廷维尤: 22.5 %芒廷维尤: 22.5 %西宁: 32.4 %西宁: 32.4 %西安: 1.0 %西安: 1.0 %贵阳: 1.0 %贵阳: 1.0 %运城: 6.9 %运城: 6.9 %郑州: 1.0 %郑州: 1.0 %重庆: 2.9 %重庆: 2.9 %其他北京十堰台州宁德宣城常德张家口晋城漯河芒廷维尤西宁西安贵阳运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (220) PDF downloads(8) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return