Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WU Jiujiang, HU Haodong, LI Yan. Reviews on Seismic Damage of Bridge Pile Foundations in Liquefiable Sites and Research Progress of Anti-Liquefaction Mechanisms[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 169-178,118. doi: 10.13204/j.gyjzG22070904
Citation: WU Jiujiang, HU Haodong, LI Yan. Reviews on Seismic Damage of Bridge Pile Foundations in Liquefiable Sites and Research Progress of Anti-Liquefaction Mechanisms[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 169-178,118. doi: 10.13204/j.gyjzG22070904

Reviews on Seismic Damage of Bridge Pile Foundations in Liquefiable Sites and Research Progress of Anti-Liquefaction Mechanisms

doi: 10.13204/j.gyjzG22070904
  • Received Date: 2022-07-09
    Available Online: 2023-12-18
  • Since 1964, there have been many destructive earthquakes that caused large-scale liquefaction phenomena around the world, such as Niigata Earthquake, Cobe Earthquake, Tangshan Earthquake, and Wenchuan Earthquake, etc. During earthquakes, many cases of earthquake-induced damage to bridge pile foundations in liquefiable sites caused significant economic losses and casualties. Based on investigations of a large number of relevant documents at home and abroad, the typical cases of earthquake-induced damage to bridge foundations at home and abroad in recent years were summed.the research progress of domestic and foreign scholars on anti-liquefaction tests, numerical simulations, and theoretical analysis for anti-liquefaction of pile foundations were emphasized introduction. Relevant summaries and analysis were performed to provide reference to further research on anti-liquefaction of bridge pile foundations.
  • loading
  • [1]
    TAREK A, RICARDO D. Evaluation of pile foundation response to lateral spreading[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(10):1051-1058.
    [2]
    HAMADA M. Large ground deformations and their effects on life-lines:1964 Niigata earthquake[R]. Case studies of liquefaction and lifelines performance during past-earthquake:Japanese Case Studies. Bufflo:National Center for Earthquake Engineering Research,1992:1-123.
    [3]
    王睿, 张建民, 张嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学,2011, 32(增刊1):501-506.
    [4]
    刘惠珊. 1995年阪神大地震的液化特点[J]. 工程抗震, 2001, 23(1):22-26.
    [5]
    孙利民, 范立础. 阪神地震后日本桥梁抗震设计规范的改订[J]. 同济大学学报, 2001, 29(1):60-64.
    [6]
    KAWASHIMA K, UNJOH S. The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design[J]. Journal of Earthquake Engineering, 1997, 1(3):505-541.
    [7]
    IKUO T. Geotechnical earthquake engineering[M]. Berlin:Springer, 2008.
    [8]
    ISHIHRA K, ALEX A, IKUO T, Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake[J]. Soils and Foundations, 1993, 33(1):133-154.
    [9]
    KAWASHIMA K, UNJOH S, HOSHIKUMA J, et al. Damage of bridges due to the 2010 Maule, Chile, Earthquake[J]. Journal of Earthquake Engineering, 2011, 15(7):1036-1068.
    [10]
    李雨润, 张健, 戎贤. 液化土中直斜桩基抗震研究进展与新问题[J]. 地震工程与工程振动, 2018, 38(6):171-181.
    [11]
    MOHANTY P, BHATTACHARYA S. Case studies of liquefaction-induced damages to two pile-supported river bridges in China[J/OL]. Journal of Performance of Constructed Facilities, 2019, 33(5)[2022-07-09].https://doi.org/10.1061/(ASCE)CF.1943-5509.0001306.
    [12]
    张克绪, 谢君斐, 陈国兴. 桩的震害及其破坏机制宏观研究[J]. 世界地震工程, 1991, 11(3):7-20.
    [13]
    刘恢先. 唐山大地震震害[M]. 北京:地震出版社, 1985.
    [14]
    丁剑霆, 姜淑珍, 包峰. 唐山地震桥梁震害回顾[J]. 世界地震工程, 2006, 22(1):68-71.
    [15]
    HWANG J H, YANG C W, CHEN C H. Investigations on soil liquefaction during the Chi-Chi earthquake[J]. Soils and Foundations, 2003, 43(6):107-123.
    [16]
    日本建築学会. 1999年台湾集集地震第I編調查報告[R].東京:日本建築学会, 2000.
    [17]
    袁晓铭, 曹振中, 孙锐,等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6):1288-1296.
    [18]
    曹振中, 袁晓铭, 陈龙伟,等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4):645-650.
    [19]
    袁晓铭, 曹振中. 汶川大地震液化的特点及带来的新问题[J]. 世界地震工程, 2011, 27(1):1-8.
    [20]
    曹振中, 侯龙清, 袁晓铭,等. 汶川8.0级地震液化震害及特征[J]. 岩土力学, 2010, 31(11):3549-3555.
    [21]
    李鸿晶, 陆鸣, 温增平,等. 汶川地震桥梁震害的特征[J]. 南京工业大学学报(自然科学版), 2009, 31(1):24-29.
    [22]
    王东升, 郭迅, 孙治国,等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动, 2009, 29(3):84-94.
    [23]
    KAWASHIMA K, TAKAHASHI Y, GE H, et al. Reconnaissance report on damage of bridges in 2008 Wenchuan, China, Earthquake[J]. Journal of Earthquake Engineering, 2009, 13(7):965-996.
    [24]
    袁近远,王兰民,汪云龙,等.不同设防水准下场地液化震害风险差异性研究[J].岩石力学与工程学报,2023,42(1):246-260.
    [25]
    管仲国,黄勇,张昊宇,等.青海玛多7.4级地震桥梁工程震害特性分析[J].世界地震工程,2021,37(3):38-45.
    [26]
    刘惠珊. 桩基震害及原因分析:日本阪神大地震的启示[J]. 工程抗震, 1999(1):37-43.
    [27]
    张建民. 水平地基液化后大变形对桩基础的影响[J]. 建筑结构学报, 2001, 22(5):75-77.
    [28]
    YASUHIRO S, ZHANG J M, TOKIMATSU K. New charts for predicting large residual post-liquefaction ground deformation[J]. Soil Dynamics and Earthquake Engineering. 1998, 17(7):427-438.
    [29]
    KOBORI T, KOSHIKA N, YAMADA K. Seismic-response-controlled structure with active mass driver system,part 2:verification[J]. Earthquake Engineering & Structural Dynamics, 1991, 20(2):133-149.
    [30]
    韩英才, NOVAK M. 水平荷载作用下群桩动力特性的研究[J]. 土木工程学报. 1992, 25(5):24-33.
    [31]
    常方强, 贾永刚, 郭秀军,等. 黄河口粉土液化过程的现场振动试验研究[J]. 岩土工程学报, 2009, 31(4):609-616.
    [32]
    ASHFORD S A, JUIRNARONGRIT T. Response of single piles and pipelines in liquefaction-induced lateral spreads using controlled blasting[J]. Earthquake Engineering and Engineering Vibration, 2002, 1(2):181-193.
    [33]
    SUGANO T,KOHAMA E. Seismic performance of urban, reclaimed and port areas-full scale experiment at tokachi port by controlled blasting technique[C]//Proceedings of the Japan Earthquake Engineering Symposium.2002:901-906.
    [34]
    KOHAMA E, SUGANO T. A full-scale test on the dynamic behavior of a steel pile quay wall by controlled blasting [C]//Proceedings of the Japan Earthquake Engineering Symposium.2002:1009-1014.
    [35]
    FIEGEL G L, KUTTER B L. Liquefaction induced lateral spreading of mildly sloping ground [J/OL]. Journal of Geotechnical Engineering, ASCE, 1994,120(12)[2022-07-09].https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2236).
    [36]
    LIU L, DOBRY R. Effect of liquefaction on lateral response of piles by centrifuge model tests[J]. National Center for Earthquake Engineering Research (NCEER) Bulletin, 19959(1):7-11.
    [37]
    WILSON D W, BOULANGER R W, KUTTER B L. Observed seismic lateral resistance of liquefying sand[J].Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10):898-906.
    [38]
    KUMAR R, SAWAISHI M, HORIKOSHI K, et al. Centrifuge modeling of hybrid foundation to mitigate liquefaction-induced effects on shallow foundation resting on liquefiable ground[J].Soils and Foundations, 2019, 59(6):2083-2098.
    [39]
    TANG L, MAN X, ZHANG X, et al. Estimation of the critical buckling load of pile foundations during soil liquefaction[J/OL].Soil Dynamics and Earthquake Engineering, 2021, 146[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106761.
    [40]
    孙锐, 袁晓铭, 王永志,等. NEES系统中振动离心机最新进展及国内振动离心机发展设想[J]. 世界地震工程, 2010, 26(1):31-39.
    [41]
    汪明武, TOBITAT, IAI S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10):2012-2017.
    [42]
    苏栋, 李相菘. 可液化土中单桩地震响应的离心机试验研究[J]. 岩土工程学报. 2006, 28(4):423-427.
    [43]
    刘星. 可液化地基中群桩基础震动响应基本规律研究[D]. 北京:清华大学, 2018.
    [44]
    LI Y, KITAZUME M, TAKAHASHI A, et al. Centrifuge study on the effect of the SCP improvement geometry on the mitigation of liquefaction-induced embankment settlement[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 148[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.10685.
    [45]
    张健, 李雨润, 戎贤, 等. 液化土中斜群桩承台动力响应特性及桩身弯矩分布规律研究[J]. 地震工程与工程振动, 2021, 41(3):235-244.
    [46]
    HE L C. Liquefaction-induced lateral spreading and its effects on pile foundations[D]. California:University of California, 2005.
    [47]
    ARULANANDAN, K, R F SCOTT. VELACS:verification of numerical procedures for the analysis of soil liquefaction problems[C]//Conference Proceedings.1993.
    [48]
    SASAKI Y, TOKIDA K, MARSUMOTO H, et al. Shake table tests on lateral ground flow induced by soil liquefaction[C]//Proceedings of the third Japan-U. S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. 1991:371-385.
    [49]
    TOWHATA I, VARGAS-MONGE W, ORENSE R P. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J].Soil Dynamics and Earthquake Engineering, 1999, 18(5):347-361.
    [50]
    HAMADA M. Performance of foundations against liquefaction-induced permanent ground displacement[C]//Proceedings of the 12th World Conference on Earthquake Engineering. 2000.
    [51]
    MOTAMED R, TOWHATA I, HONDA T, et al. Behavior of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in e-defense project[J].Soils and Foundations, 2009, 49(3):459-475.
    [52]
    MOSS R E S, HONNETTE T R, JACOBS J S. Large-scale liquefaction and post-liquefaction shake table testing[J/OL].Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12) [2022-07-09]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002400.
    [53]
    ORANG M J, BOUSHEHRI R, MOTAMED R, et al. An experimental evaluation of helical piles as a liquefaction-induced building settlement mitigation measure[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 151[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106994.
    [54]
    BELHASSENA F Z, TANG L, BOURI D E, et al. Estimation of bending moment and pile displacement for soil-pile-quay wall system subjected to liquefaction induced lateral spreading[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 151[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106989.
    [55]
    HUSSEIN A F, EL NAGGAR M H. Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 149[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106853.
    [56]
    宋波, 刘惠珊. 软土地基震陷的试验研究[J].工程抗震, 1990(1):34-37.
    [57]
    刘惠珊, 陈克景. 液化土中的桩基试验[J]. 工程抗震, 1991(2):19-23.
    [58]
    武思宇, 宋二祥, 刘华北,等. 刚性桩复合地基的振动台试验研究[J].岩土工程学报, 2005, 38(11):1334-1337.
    [59]
    李雨润, 袁晓铭, 曹振中. 液化土中桩基础动力反应试验研究[J]. 地震工程与工程振动, 2006, 26(3):257-259.
    [60]
    陈育民, 刘汉龙, 赵楠. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12):114-119.
    [61]
    许成顺, 豆鹏飞, 杜修力. 液化场地-群桩基础-结构体系动力响应分析:大型振动台模型试验研究[J].岩土工程学报, 2019, 41(12):2173-2181.
    [62]
    周恩全, 伊思航, 文艳, 等. 可液化倾斜场地中桩基动力响应振动台试验研究[J]. 地震工程学报, 2020, 42(3):732-741.
    [63]
    张恒源, 钱德玲, 沈超, 等. 水平和竖向地震作用下液化场地群桩基础动力响应试验研究[J].岩土力学, 2020, 41(3):905-914.
    [64]
    庄海洋, 赵畅, 于旭, 等. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究[J].岩土工程学报:2022,44(6):979-987.
    [65]
    凌贤长, 王东升. 液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002, 22(4):53-59.
    [66]
    FAMIGLIETTI C M, PREVOST J H. Solution of the slump test using a finite deformation elastoplastic druckerprager model[J].International Journal for Numerical Methods in Engineering, 1994, 37(22):3869-3903.
    [67]
    WU W H, SMITH H A. Efficient modal analysis for structures with soil-structure interaction[J]. Earthquake Engineering and Structure Dynamic, 1995, 24(3):283-299.
    [68]
    LU C W, OKA F, ZHANG F. Analysis of soil-pile-structure interaction in a two-layer ground during earthquakes considering liquefaction[J]. International Journal for Numerical and Analytical Methods in Geotechnics, 2008, 32(8):863-895.
    [69]
    BRADLEY B A, CUBRINOVSKI M,DHAKAL R P, et al. Probabilistic seismic performance and loss assessment of a bridge-foundation-soil system[J]. Soil Dynamics and Earthquake Engineering, 2009, 30(5):395-411.
    [70]
    TAKAHASHI A, SUGITA H, TANIMOTO S. Forces acting on bridge abutments over liquefied ground[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(3):146-156.
    [71]
    黄雨, 八嶋厚, 张锋. 液化场地桩-土-结构动力相互作用的有限元分析[J].岩土工程学报, 2005, 27(6):646-651.
    [72]
    陈国兴, 陈继华, 王志华,等. 土-结构-TMD体系振动台模型试验与数值模拟对比研究[J].岩土工程学报, 2003, 25(5):532-537.
    [73]
    庄海洋, 陈国兴. 砂土液化大变形本构模型及在ABAQUS软件上的实现[J].世界地震工程, 2011, 27(2):45-50.
    [74]
    XU L Y, SONG C X, CHEN W Y, et al. Liquefaction-induced settlement of the pile group under vertical and horizontal ground motions[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 144[2022-07-09]. https://doi.org/10.1016/j.soildyn.2021.106709.
    [75]
    冯忠居, 孟莹莹, 董芸秀, 等. 强震作用下液化场地桩-土非线性动力相互作用特性[J].科学技术与工程, 2021, 21(17):7299-7307.
    [76]
    苏雷, 唐亮, 凌贤长, 等. 液化侧扩流场地桩基动力反应振动台试验数值模拟[J]. 防灾减灾工程学报, 2019, 39(2):227-235.
    [77]
    崔杰, 张征, 唐亮, 等. 液化微倾场地群桩-土动力相互作用p-y曲线特性[J].地震工程与工程振动, 2021, 41(5):154-164.
    [78]
    孟畅, 唐亮. 近岸液化场地高桩码头地震易损性分析[J]. 岩土工程学报, 2021, 43(12):2274-2282.
    [79]
    ALTERMAN Z, KARAL F C. Propagation of elastic waves in layered media by finite difference methods[J]. Bulletin of the Seismological Society of America,1968, 59(3):67-98.
    [80]
    WANG S T, REESE L C. Designed foundations in liquefied soils[J]. Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE Geotechnical Special Publication,1998, 2(75):1331-1343.
    [81]
    POURYA E K, KAYNIA A M. Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures[J/OL]. Soil Dynamics and Earthquake Engineering, 2019, 127[2022-07-09]. https://doi.org/10.1016/j.soildyn.2019.105839.
    [82]
    陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京:中国水利水电出版社, 2009.
    [83]
    孔德森, 李文胜, 常龙龙. 液化场地倾斜桩动力p-y曲线研究地震工程与工程振动, 2019, 39(4):41-56.
    [84]
    陈清军, 赵云峰, 王汉东,等. 振动台模型试验中地基土域的数值模拟[J]. 力学季刊, 2002, 23(3):407-411.
    [85]
    EL-MESTKAWY M. Discrete element simulation for seismically-induced soil liquefaction[D]. New York:The State University of New York, 1998.
    [86]
    周健, 白彦峰, 张昭,等. 砂土中群桩室内模型试验及颗粒流模拟研究[J]. 岩土工程学报,2009, 31(8):1275-1280.
    [87]
    荚颖, 唐小微, 栾茂田. 砂土液化变形的有限元-无网格耦合方法[J]. 岩土力学,2010, 31(8):2643-2654.
    [88]
    黄雨, 郝亮. 液化地基中桩的破坏机理研究进展[J]. 工程地质学报, 2008, 16(2):184-189.
    [89]
    黄雨, 郝亮. 基于CFD的地震液化研究新进展[J]. 岩土力学, 2008, 29(8):2231-2251.
    [90]
    黄雨,舒翔,叶为民,等.桩基础抗震研究现状综述[J].工业建筑,2002,32(7):50-53.
    [91]
    凌贤长, 唐亮. 液化场地桩基侧向响应分析中p-y曲线模型研究进展[J]. 力学进展, 2010, 40(3):250-262.
    [92]
    MATLOCK H. Correlations for design of laterally loaded piles in soft clay[C]//Proc. of 2nd Annu. Offshore Technol. Conf., OTC 1204, Offshore Technology Conference. 1970:577-607.
    [93]
    TING J M. Full scale cyclic dynamic lateral pile response[J]. Journal of Geotechnical Engineering, 1987, 113(1):30-45.
    [94]
    JUIRNARONGRIT T, ASHFORD S A. Soil-pile response to blast-induced lateral spreading. II:Analysis and assessment of the p-y method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6):163-172.
    [95]
    王建华, 冯士伦. 液化土层中桩基水平承载特性分析[J].岩土力学,2005, 26(10):1597-1601.
    [96]
    王建华, 戚春香, 余正春,等. 弱化饱和砂土中桩的p-y曲线与极限抗力研究[J].岩土工程学报, 2008, 30(3):309-315.
    [97]
    李雨润, 袁晓铭, 梁艳. 桩-液化土相互作用p-y曲线修正计算方法研究[J]. 岩土工程学报, 2009, 31(4):595-599.
    [98]
    唐亮. 液化场地桩-土动力相互作用p-y曲线模型研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [99]
    徐鹏举. 可液化场地桥梁桩基地震反应分析与简化分析方法研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [100]
    李帅, 王建华, 冯士伦. 液化土中桩基抗震设计现状[J]. 长安大学学报, 2003, 20(2):1-5.
    [101]
    王兰民, 莫庸. 黄土地基震陷和液化时桩基的抗震设计计算方法[C]//纪念汶川地震一周年:地震工程与减轻地震灾害研讨会论文集. 北京:地震出版社, 2009.
    [102]
    Japan Road Association. Specifications for highway bridges[S]. Tokyo:Japan Road Association, 2002.
    [103]
    RICARDO D, TAREK A, O'ROURKE T D. Single piles in lateral spreads:field bending moment evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10):879-889.
    [104]
    戴琰, 陈国兴, 王志华. 可液化地基群桩基础地震反应总应力与有效应力分析的比较[J]. 防灾减灾工程学报, 2017, 37(5):795-801.
    [105]
    叶海霞, 王康达, 杨万勇, 等. 拟静力法与时程分析法计算液化场地桩基地震响应的差异研究[J].自然灾害学报, 2018, 27(6):166-172.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return