Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YOU Guangdi, LI Feng, ZHANG Qijun, WANG Qinghe, HAN Tao. Long-Term Performance of Two-Span Continuous Steel-Recycled Concrete Composite Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 124-131. doi: 10.13204/j.gyjzG22070208
Citation: YOU Guangdi, LI Feng, ZHANG Qijun, WANG Qinghe, HAN Tao. Long-Term Performance of Two-Span Continuous Steel-Recycled Concrete Composite Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 124-131. doi: 10.13204/j.gyjzG22070208

Long-Term Performance of Two-Span Continuous Steel-Recycled Concrete Composite Beams

doi: 10.13204/j.gyjzG22070208
  • Received Date: 2022-07-02
  • To study the influence of recycled coarse aggregate (RCA) on the long-term performance of two-span continuous steel-concrete composite beams, a nonlinear finite element model (FEM) was established based on ABAQUS software, considering the combined effects of concrete shrinkage and creep. The reliability of the simulation was verified by three group long-term test results of two-span continuous steel-concrete composite beams. Further, the parameters of two-span continuous steel-recycled concrete composite beams were analyzed, and the influence of each parameter on their long-term performance was quantified. The results showed that the maximum difference in the mid-span deflection of two-span composite beams between the FE results and the experimental results was 11.7%,and a 3.77% difference between the FE results of the negative bending moment of the middle bearing and the experimental results was obtained. The results show that when the RCA replacement ratio is 50% and 100%, the long-term deflection of the two-span continuous steel-concrete composite beam increases by 5.52%~9.72% and 12.98%~20.39%. When the specimens using reinforced concrete slab (under the influence of uniform shrinkage and creep) are replaced with open-end and closed-end composite slab (under the influence of non-uniform shrinkage and creep), the ratio of long-term deflection to instantaneous deflection is reduced by 8.04%~19.56%. Different shrinkage creep model should be selected for different floor slab types.
  • [1]
    樊健生, 聂建国, 王浩. 考虑收缩、徐变及开裂影响的组合梁长期受力性能研究(I):试验及计算[J]. 土木工程学报, 2009,42(3):8-15.
    [2]
    VRCELJ Z, RANZI G, AL-DEEN S. Full-scale long-term experiments of simply supported composite beams with solid slabs[J]. Journal of Constructional Steel Research, 2011,67(3):308-321.
    [3]
    KATWAL U, TAO Z, HASSAN K. Finite element modelling of steel-concrete composite beams with profiled steel sheeting[J]. Journal of Constructional Steel Research, 2018,146(7):1-15.
    [4]
    WANG Q H, YANG J S, LIANG Y Z, et al. Prediction of time-dependent behaviour of steel-recycled aggregate concrete (RAC) composite slabs via thermo-mechanical finite element modelling [J]. Journal of Building Engineering, 2020, 29(1): 1-18.
    [5]
    王庆贺, 梁永泽, 张欢, 等. 考虑荷载分布的多跨连续钢-再生混凝土组合板长期性能研究[J]. 工程力学, 2021, 38(2): 198-210.
    [6]
    曹万林, 赵羽习, 叶涛萍. 再生混凝土结构长期工作性能研究进展[J]. 哈尔滨工业大学学报, 2019, 51(6): 1-17.
    [7]
    GENG Y, WANG Y Y, CHEN J. Creep behaviour of concrete using recycled coarse aggregates obtained from source concrete with different strengths [J]. Construction and Building Materials, 2016,128(12):199-213.
    [8]
    WANG Q, GENG Y, WANG Y, et al. Drying shrinkage model for recycled aggregate concrete accounting for the influence of parent concrete[J]. Engineering Structures, 2020, 202(1):1-16.
    [9]
    ZHANG H, WANG Y, LEHMAN D E, et al. Time-dependent drying shrinkage model for concrete with coarse and fine recycled aggregate[J]. Cement and Concrete Composites, 2020,105(1):1-16.
    [10]
    SEARA-PAZ S, GONZLEZ-FONTEBO B, MARTINEE-ABELLA F, et al. Time-dependent behaviour of structural concrete made with recycled coarse aggregates: creep and shrinkage[J]. Construction & Building Materials, 2016,122(9):95-109.
    [11]
    GENG Y, ZHAO M, YANG H, et al. Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete[J]. Cement and Concrete Composites, 2019,103(10):303-317.
    [12]
    张建伟, 刘方方, 卡卓乍, 等. 钢-压型钢板再生粗骨料混凝土组合梁受弯性能[J]. 哈尔滨工业大学学报, 2015, 47(12): 86-92.
    [13]
    YANG J S, LIU C Y, WANG Q H, et al. Time-dependent behavior of composite steel-recycled aggregate concrete beams via thermomechanical finite element modeling[J]. Buildings, 2022, 12(6):1-25.
    [14]
    SAKR A, SAKLA S. Long-term deflection of cracked composite beams with nonlinear partial shear interaction: I-Finite element modeling[J]. Journal of Constructional Steel Research, 2008,64(12):1446-1455.
    [15]
    XUE W C, DING M, HE C, et al. Long-term behavior of prestressed composite beams at service loads for one year[J]. Journal of Structural Engineering, 2008,134(6):930-937.
    [16]
    FAN J S, NIE J G, LI Q W, et al. Long-term behavior of composite beams under positive and negative bending. Ⅰ: experimental study[J]. Journal of Structural Engineering, 2010, 136(7):849-857.
    [17]
    ZHANG S, CHEN X, LI G. Study on the Influence of reinforcement on creep and shrinkage effects of composite beams[C]//IOP Conference Series: Earth and Environmental Science. 2019:1-15.
    [18]
    WRIGHT D, VITEK L, RAKIB N. Long-term creep and shrinkage in composite beams with partial connection[J]. Proceedings of the Institution of Civil Engineers Structures and Buildings, 1992,94(2):187-195.
    [19]
    RANZI G. Short-and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate[J]. Steel and Composite Structures, 2006,6(3):237-255.
    [20]
    REGINATO H, TAMAYO P, MORSCH B. Finite element study of effective width in steel-concrete composite beams under long-term service loads[J]. Latin American Journal of Solids and Structures, 2018,15(8):1-25.
    [21]
    ERKMEN E, BRADFORD A. Time-dependent creep and shrinkage analysis of composite beams curved in-plan[J]. Computers & Structures, 2011,89(1/2):67-77.
    [22]
    XIANG T Y, YANG C, ZHAO G Y. Stochastic creep and shrinkage effect of steel-concrete composite beam[J]. Advances in Structural Engineering, 2015,18(8):1129-1140.
    [23]
    GILBERT R I, BRAFORD M A. Time-dependent behavior of continuous composite beams at service loads[J]. Journal of Structural Engineering, 1995, 121(2):319-327.
    [24]
    AL-DEEN S, RANZE G, VRCELJ Z. Long-term experiments of composite steel-concrete beams[J]. Procedia Engineering, 2011, 53(14): 2807-2814.
    [25]
    European Committee for Standardization (ECS). Eurocode 2: design of concrete structures-part 1-1: General rules and rules for buildings: ENV 1992-1-2[S]. Brussels: ECS,2004.
    [26]
    DE JUAN M S, GUTIÉRREZ P A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate[J]. Construction and Building Materials, 2009, 23(2): 872-877.
    [27]
    XIAO J Z, LI W G, FAN Y H, et al. An overview of study on recycled aggregate concrete in China (1996-2011)[J]. Construction and Building Materials, 2012,31(6):364-383.
    [28]
    LIU Q, XIAO J Z, SUN Z H. Experimental study on the failure mechanism of recycled concrete[J]. Cement and Concrete Research, 2011,41(10):1050-1057.
    [29]
    WANG Q H. Time-dependent behaviour of composite steel-concrete slabs prepared with recycled coarse aggregate [D]. Sydney, Australia: The University of Sydney, 2017.
  • Relative Articles

    [1]ZHANG Xuechang, LI Yanhua, ZHANG Sumei, WANG Yuyin, ZHOU Chong. Experimental Research on Long-Term Performance of Axially Loaded Steel- Tube-Confined CFST Short Columns Considering Temperature Effect[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 110-119. doi: 10.3724/j.gyjzG24080306
    [2]YAN Dawei, XUE Weichen, JIANG Jiafei. A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001
    [3]ZHONG Zhiwu. Mechanical Properties of Fly Ash Concrete After Creep and Being Subjected to Different Stresses[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 152-157,132. doi: 10.13204/j.gyjzG21112105
    [4]LI Jiaqi, CHEN Zhihua, DU Yansheng, WU Yongchuan, LIU Xueshan. STUDY ON CONSTITUTIVE MODEL OF CORE CONCRETE OF RECYCLED AGGREGATE CONCRETE FILLED STEEL TUBULAR COLUMNS UNDER COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 108-115,15. doi: 10.13204/j.gyjzG20081506
    [5]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [6]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [7]LAI Xiuying, CHEN Zhaoyu, ZHENG Juan. EXPERIMENTAL RESEARCH ON CREEP OF CONCRETE FILLED STEEL TUBES UNDER ECCENTRIC COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 139-146. doi: 10.13204/j.gyjz201904300010
    [8]He Xuejun, Yu Xiaoguang, Zhou Chaoyang, Liu Shu, Wu Xukang. FINITE ELEMENT ANALYSIS OF SEISMIC BEHAVIOR OF RC FRAME JOINTS INDIRECTLY STRENGTHENED WITH TIED AND LOCK-ANCHORED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 157-161. doi: 10.13204/j.gyjz201505033
    [9]Chen Zongping, Zhan Donghui, Xu Jinjun. RESEARCH ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE USING DIFFERENT RECYCLED COARSE AGGREGATE REPLACEMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 130-135. doi: 10.13204/j.gyjz201501026
    [10]Yang Yiting, Gong Chao, Hou Zhaoxin, Li Chengjiang. FINITE ELEMENT ANALYSIS OF MECHANICAL BEHAVIOR OF NEW TYPE HIGH STRENGTH STEEL-CONCRETE FLAT BEAM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 39-42. doi: 10.13204/j.gyjz201403010
    [11]Chen Zhouyi, Zheng Zhupeng, Lei Jiayan, Liu Lijun. DEFORMATION AND STRESS REDISTRIBUTION OF CCRST COLUMNS UNDER LONG-TERM AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 68-72. doi: 10.13204/j.gyjz201101017
    [12]Wang Haiyang, Zha Xiaoxiong, Huang Haochun, Wang Xiaodong. EXPERIMENTAL STUDY ON THE CREEP EFFECT OF THE EXPANSIVE AGENT AND RECYCLED CFST COLUMN IN CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 43-46,66. doi: 10.13204/j.gyjz201106008
    [13]Zhang Yuntao, Meng Shaoping, Xi Zhuo, Pan Zuanfeng, Lin Bo. EXPERIMENTAL RESEARCH ON PRESTRESSING TIME-DEPENDENT LOSS OF HIGH-PERFORMANCE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 21-25. doi: 10.13204/j.gyjz200912006
    [14]Zhang Yuntao, Xi Zhuo, Meng Shaoping, Liu Zhao. EXPERIMENTAL STUDY ON BEHAVIOR OF CANTILEVER GIRDER INDUCED BY SHRINKAGE AND CREEP OF HIGH-PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 26-28. doi: 10.13204/j.gyjz200912007
    [15]Zhang Yong-sheng, Li Yan-ying, Meng Shao-ping. RESEARCH ON TEMPERATURE AND SHRINKAGE CRACK OF SUPER-LONG FRAME BEAM-SLAB STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 50-53,76. doi: 10.13204/j.gyjz200606016
    [16]Wu Jing, Wu Jun-yan, Meng Shao-ping. RESEARCH ON INDIRECT STRESS AND CRACK CONTROL OF CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 13-15,98. doi: 10.13204/j.gyjz200605004
    [17]Zhang Yu-ming, Wu Jing, Meng Shao-ping. STUDY ON CONTROL OF CRACK IN PRESTRESSED CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 8-12. doi: 10.13204/j.gyjz200605003
    [18]Sun Hai-lin, Ye Lie-ping, Guo Yu-shun, Ding Jian-tong. LONG-TERM DEFLECTION OF HIGH-STRENGTH LIGHTWEIGHT AGGREGATE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 88-91,113. doi: 10.13204/j.gyjz200606024
    [19]Yao Wu. CONTROL AND OPTIMIZED DESIGN FOR VOLUME STABILITY OF HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 74-77. doi: 10.13204/j.gyjz200511022
    [20]Song Wei, Yuan Yong. PRACTICAL ANALYSIS OF FLEXURAL STIFFNESS OF PRESTRESS CONCRETE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 30-33. doi: 10.13204/j.gyjz200411009
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.4 %FULLTEXT: 10.4 %META: 83.5 %META: 83.5 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %上海: 0.9 %上海: 0.9 %东莞: 0.9 %东莞: 0.9 %保定: 0.9 %保定: 0.9 %兰州: 0.9 %兰州: 0.9 %北京: 2.6 %北京: 2.6 %合肥: 0.9 %合肥: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %天津: 0.9 %天津: 0.9 %宣城: 0.9 %宣城: 0.9 %常州: 0.9 %常州: 0.9 %常德: 0.9 %常德: 0.9 %廊坊: 0.9 %廊坊: 0.9 %成都: 1.7 %成都: 1.7 %扬州: 0.9 %扬州: 0.9 %新乡: 5.2 %新乡: 5.2 %昆明: 3.5 %昆明: 3.5 %沈阳: 17.4 %沈阳: 17.4 %济南: 1.7 %济南: 1.7 %温州: 0.9 %温州: 0.9 %漯河: 2.6 %漯河: 2.6 %芒廷维尤: 11.3 %芒廷维尤: 11.3 %芝加哥: 2.6 %芝加哥: 2.6 %西宁: 13.9 %西宁: 13.9 %西安: 1.7 %西安: 1.7 %贵阳: 1.7 %贵阳: 1.7 %运城: 7.8 %运城: 7.8 %邢台: 0.9 %邢台: 0.9 %郑州: 2.6 %郑州: 2.6 %重庆: 0.9 %重庆: 0.9 %长沙: 0.9 %长沙: 0.9 %其他上海东莞保定兰州北京合肥嘉兴天津宣城常州常德廊坊成都扬州新乡昆明沈阳济南温州漯河芒廷维尤芝加哥西宁西安贵阳运城邢台郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return