Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Tian Chenghao, Yu Yang, Dong Cheng, Liu Ming. PRESTRESS RECONSTRUCTION DESIGN FOR ANTI-RAIN AND SNOW OF THE EXISTING MULTI-SPAN CABLE TRUSS WAVE CANOPY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 162-165. doi: 10.13204/j.gyjz201505034
Citation: LIN Hankun, XIAO Yiqiang, ZHU Xuemei. Research on Couple Simulation Method on Effects of Thermal and Wind Environment of Vertical Climbing Green Facades[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 88-96. doi: 10.13204/j.gyjzG22060205

Research on Couple Simulation Method on Effects of Thermal and Wind Environment of Vertical Climbing Green Facades

doi: 10.13204/j.gyjzG22060205
  • Received Date: 2022-06-02
  • Based on the application and development of vertical climbing green facde in high-density cities, the vertical climbing green facades on thermal and wind environment in hot-humid climate areas. Firstly, field measurements were conducted to record the thermal indices around a case of climbing green facade in typical extreme hot summer days in hot-humid climate areas. Secondly, a validation was conducted with a CFD simulation method with the software. Then, the combination condition of typical overhead transition space and climbing green facade was simulated and tested for human thermal comfort evaluation coupled with CFD and Ladybug+Honeybee tools. The results showed that: 1)field measurements results revealed that the temperature, globe temperature (Tg), and wind velocity (Va) of the shaded area was reduced by 0.06-0.53 ℃, 0.37-1.73 ℃, and 0-0.18 m/s compared to the unshaded area, relpectively. The mean radiant temperature(MRT) and physiological equivalent temperature(PET) were reduced by 0.58-2.74 ℃ and 0.27-1.43 ℃, respectively; 2)CFD simulation results revealed different greening models reduced the average temperature by 0.1-0.3 ℃ except the model FG-1; 3) the wind velocity of model FG-2 and FG-3 reduced by about 1.3 m/s, the wind velocity of DG model series reduced by about 0.8 m/s; 4) the PET of FG-2, FG-3, DG series and WG series models reduced by about 0.8-1.1 ℃. Furthermore, FG-2, FG-3 and DG series model presented better optimizations on the whole open floor space and could be the better choice for the greenery layout.
  • [1]
    AFLAKI A, MIRNEZHAD M, GHAFFARIANHOSEINI A, et al. Urban heat island mitigation strategies:a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong[J]. Cities, 2017, 62:131-145.
    [2]
    COMA J, PÉREZ G, DE GRACIA A, et al. Vertical greenery systems for energy savings in buildings:a comparative study between green walls and green facades[J]. Building and Environment, 2017, 111:228-237.
    [3]
    梁丽莎.广州地区攀援垂直绿化降温及节能效益研究[D].广州:华南理工大学,2019.
    [4]
    JIM C. Thermal performance of climber green walls:effects of solar irradiance and orientation[J]. Apply Energy, 2015, 154:631-643.
    [5]
    PERINI K, ROSASCO P. Cost-benefit analysis for green façades and living wall systems[J]. Building and Environment, 2013, 70:110-121.
    [6]
    KOYAMA T, YOSHINAGA M, MAEDA K, et al. Transpiration cooling effect of climber greenwall with an air gap on indoor thermal environment[J]. Ecological Engineering, 2015, 83:343-353.
    [7]
    LIU H, KONG F, YIN H, et al. Impacts of green roofs on water, temperature, and air quality:a bibliometric review[J/OL]. Building and Environment, 2021, 196[2022-05-24]. https://doi.org/10.1016/j.buildenv.2021.107794.
    [8]
    PERINI K, OTTELÉ M, FRAAIJ A, et al. Vertical greening systems and the effect on air flow and temperature on the building envelope[J]. Building and Environment, 2011, 46:2287-2294.
    [9]
    LIN H, MUSSO F, XIAO Y. Shading effect and heat reflection of the green facade:measurements of an external corridor building in Munich, Germany[C]//Proceedings of the 34th International Conference on Passive and Low Energy Architecture. 2018:931-933.
    [10]
    WONG N, KWANG T, CHEN Y, et al. Thermal evaluation of vertical greenery systems for building walls[J]. Building and Environment, 2010, 45:663-672.
    [11]
    殷实,WERNER LANG,肖毅强.湿热地区传统骑楼街区夏季热环境研究[J].南方建筑,2019(4):53-59.
    [12]
    肖毅强.亚热带绿色建筑气候适应性设计的关键问题思考[J].世界建筑,2016(6):34-37,127.
    [13]
    杨昶.南方地区玻璃采光顶喷淋降温系统设计研究[D].广州:华南理工大学,2019.
    [14]
    孟晓静,姚若昕,刘启薇.喷雾送风系统对热环境及人体热反应影响研究[J].安全与环境学报,2023,23(3):819-825.
    [15]
    殷忠路.雨水花园的降温效应及其机制研究[D].南京:东南大学,2021.
    [16]
    CHUN C, KWOK A, TAMURA A. Thermal comfort in transitional spaces-basic concepts:literature review and trial measurement[J]. Building and Environment, 2004, 39:1187-1192.
    [17]
    HAYDER A, MARIA H, REBECCA H, et al. The potential of facade greening in mitigating the effects of heatwaves in Central European cities[J/OL]. Building and Environment, 2022, 216[2022-05-24]. https://doi.org/10.1016/j.buildenv.2022.109021.
    [18]
    KOKOGIANNAKIS G, DARKWA J, BADEKA S, et al. Experimental comparison of green facades with outdoor test cells during a hot humid season[J]. Energy and Buildings, 2019, 185:196-209.
    [19]
    GROMKE C, BLOCKEN B, JANSSEN W, et al. CFD analysis of transpirational cooling by vegetation:case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands[J]. Building and Environment, 2015, 83:11-26.
    [20]
    PÉREZ G, COMA J, SOL S, et al. Green facade for energy savings in buildings:the influence of leaf area index and facade orientation on the shadow effect[J]. Applied Energy, 2017, 187:424-437.
    [21]
    SHASHUA L, PEARLMUTTER D, ERELL E. The cooling efficiency of urban landscape strategies in a hot dry climate[J]. Landscape and Urban Planning, 2009, 92(3):179-186.
    [22]
    International Organization for Standardization, International Electrotechnical Commission. Ergonomics of the thermal environ-ment:instruments for measuring physical quantities[S]. Genève, Switzerland:International Organization for Standar-dization, 1998.
    [23]
    HÖPPE P. The physiological equivalent temperature:a universal index for the biometeorological assessment of the thermal environment[J]. International Journal of Biometeorology, 1999, 43(2):71-75.
    [24]
    MATZARAKIS A, RUTZ F, MAYER H. Modelling radiation fluxes in simple and complex environments:application of the RayMan model[J]. International Journal of Biometeorology, 2007, 51(4):323-334.
    [25]
    徐晓燕,沈雅雅.高层住区底层架空空间布局与实际使用效果的实证研究[J].华中建筑,2019,37(1):49-53.
    [26]
    赵丽艳.被动式设计视角下炎热地区公共建筑灰空间形态设计研究[D].泉州:华侨大学,2018.
    [27]
    RICHARDS P, HOXEY R. Appropriate boundary conditions for computational wind engineering models using the K-ε turbulence model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 93(46/47):145-153.
    [28]
    TOMINAGA Y, MOCHIDA A, YOSHIE R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11):1749-1761.
    [29]
    ŠUKLJE T, MEDVED S, ARKAR C. On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions[J]. Energy, 2016, 115:1055-1068.
    [30]
    SANZ C. A note on k-ε modelling of vegetation canopy air-flows[J]. Boundary-Layer Meteorology, 2003, 108:191-192.
    [31]
    SHIH T, LIOU W, SHABBIR A, et al. A new K-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers&Fluids, 1995, 24:227-238.
    [32]
    FIDAROS D, BAXEVANOU C, BARTZANAS T, et al. Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day[J]. Renewable Energy, 2010, 35:1380-1386.
    [33]
    ZHENG S, ZHAO L, LI Q. Numerical simulation of the impact of different vegetation species on the outdoor thermal environment[J]. Urban Forestry&Urban Greening, 2016, 18:138-150.
  • Relative Articles

    [1]WANG Heng, ZENG Ke, QIU Tianyi, SHI Hairong, WANG Chunlin. Experimental Research on Mechanical Properties of Novel Prefabricated Concrete Column Joints with Mortise-Tenon Type Connectors[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 20-26. doi: 10.3724/j.gyjzG24061705
    [2]WU Guodong, LI Yushan, ZHU Zhihong, ZHENG Wenting, CAO Ruiwen. An Exploration on Sustainable Regeneration Design of Existing Urban Water Towers: A Case Study of the Winning Works of the Second National Green Building Design Competition in 2022[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 70-76. doi: 10.13204/j.gyjzG23053008
    [3]LI Ruixue, LIU Yulin, BAI Yu, GUO Haifeng, WANG Yingqi. COMPARISONS OF THERMAL BRIDGE BLOCKING-UP METHODS FOR THE MAIN KEELS OF STEEL STRUCTURE BUILDING CURTAIN WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 195-199. doi: 10.13204/j.gyjzG20050806
    [4]Ma Hui, Xu Jianyang, Zhao Hongtie. ANALYSIS OF RESPONSE OF ANCIENT TIMBER BUILDINGS ON THE HIGH PEDESTAL UNDER RANDOM EARTHQUAKE EXCITATIONS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 45-49. doi: 10.13204/j.gyjz201402011
    [5]Li Nan, Yang Liu, Luo Zhixing, Wang Qianqian. STUDY OF ADAPTABILITY FOR STRAW-BALE HOUSES IN NORTHERN RURAL AREA[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 64-67.
    [6]Li Jing, Zeng Yusheng, Zhu Yuxi, Deng Zhiqiang, Zhu Zhanyuan. THE ENERGY-SAVING SYSTEM TECHNOLOGY OF LIGHT-GAUGE STEEL STRUCTURE RESIDENCE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 55-60.
    [7]Ma Ke, Wu Yongcheng, LüJinqing, Zhou Qi, Xia Runqiao. RESEARCH ON ENERGY-SAVING RECONSTRUCTION STRATEGY OF THE RURAL RESIDENCE IN NORTHWEST CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 54-56,117. doi: 10.13204/j.gyjz201304011
    [8]Sun Fengming, Huo Yujiao, Zhou Changhao. ENERGY- SAVING ROOF DESIGN OF RURAL NURSERY BUILDINGS IN HANDAN AREA[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 44-47,102. doi: 10.13204/j.gyjz201204009
    [9]Xiao Min, Zhang Guoqiang, Liu Hongcheng. STUDY ON DESIGN OF ENERGY-SAVING ROOFS OF RESIDENCE BUILDINGS IN HUNAN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 49-53. doi: 10.13204/j.gyjz201208011
    [10]Shu Xin, Ji Xiang. STUDY ON ENERGY- EFFICIENT OF RESIDENTIAL BUILDINGS IN COLD REGIONS OF JIANGSU PROVINCE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 67-70,164. doi: 10.13204/j.gyjz2011205011
    [11]Lu Jun. TECHNICAL IMPLEMENTATION OF ENERGY-SAVING RECONSTRUCTION OF TRADITIONAL RESIDENTIAL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 20-22. doi: 10.13204/j.gyjz201003006
    [12]Cui Yanqi. ANALYSIS OF ENERGY-SAVING IN THE RURAL HOUSING CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 61-63. doi: 10.13204/j.gyjz201008014
    [13]Zhou Yingcai, Zhao Shusheng, Zhou Qing. STUDY ON THE IMPROVEMENT OF ARCHITECTURE'S EXTERIOR INSULATION STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 6-8. doi: 10.13204/j.gyjz200806003
    [14]Liu Boquan, Tian Miao, Liu Ming. ANALYSIS ON ENERGY EFFICIENCY OF STRAW BALE BUILDING AND THE APPLICABLE PROSPECT FOR RURAL IN NORTHWESTERN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 17-19. doi: 10.13204/j.gyjz200703005
    [15]Zou Chunlai, Zhou Bo, Fan Xiaogang. DESIGN WAY OF ENERGY-SAVING AND FEASIBILITY OF PASSIVE BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 45-47. doi: 10.13204/j.gyjz200705012
    [16]Yang Lu, Li Xingzhao, Yan Yonghong. STUDY ON THE ENERGY -EFFICIENT DESIGN OF EXTERIOR WALL OF DEPARTMENT STORES IN CHONGQING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 26-29. doi: 10.13204/j.gyjz200703008
    [17]Fang Zhiyong, Lin Chuan. RESEARCH AND PRACTICE OF MODERN RURAL RESIDENTIAL DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 28-32. doi: 10.13204/j.gyjz200706008
    [18]Xu Qingfeng, Zhu Lei. STATE -OF -THE -ART OF WOOD STRUCTURE STRENGTHENED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 104-108. doi: 10.13204/j.gyjz200709024
    [19]Wang Jianhua. ASSESSMENT ON COMPREHENSIVE ENERGY-CONSERVING RESULT OF BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 19-21. doi: 10.13204/j.gyjz200601007
    [20]Yang Zijiang. EXPLORATION OF ENERGY-SAVING OF TOWN HOUSINGS IN HOT SUMMER AND COLD WINTER AREA[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 16-18,42. doi: 10.13204/j.gyjz200507006
  • Cited by

    Periodical cited type(3)

    1. 樊轲,戴靠山,衡俊霖,王睿,廖光明. 风电塔筒环法兰连接结构型高强铆钉的疲劳特性. 土木与环境工程学报(中英文). 2025(02): 151-161 .
    2. 王前选,王锐锋,李虎,曹航,刘成沛. 轨道车辆螺栓松动量与预紧力视觉检测方法研究. 铁道科学与工程学报. 2023(09): 3511-3524 .
    3. 霍林生,李宏男,杨卓栋,周靖. 钢结构螺栓连接松动智能检测及监测技术的研究进展. 工业建筑. 2023(09): 10-17 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.6 %FULLTEXT: 8.6 %META: 90.0 %META: 90.0 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.1 %其他: 9.1 %其他: 0.5 %其他: 0.5 %Spain: 2.9 %Spain: 2.9 %[]: 1.4 %[]: 1.4 %上海: 1.9 %上海: 1.9 %东莞: 0.5 %东莞: 0.5 %兰州: 0.5 %兰州: 0.5 %北京: 12.4 %北京: 12.4 %南京: 0.5 %南京: 0.5 %台州: 1.0 %台州: 1.0 %合肥: 1.4 %合肥: 1.4 %合肥市肥东县: 0.5 %合肥市肥东县: 0.5 %唐山: 0.5 %唐山: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %常州: 0.5 %常州: 0.5 %常德: 0.5 %常德: 0.5 %廊坊: 0.5 %廊坊: 0.5 %张家口: 2.9 %张家口: 2.9 %成都: 1.4 %成都: 1.4 %扬州: 0.5 %扬州: 0.5 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.0 %杭州: 1.0 %桂林: 0.5 %桂林: 0.5 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.5 %沈阳: 0.5 %济南: 1.0 %济南: 1.0 %济宁: 1.4 %济宁: 1.4 %石家庄: 1.0 %石家庄: 1.0 %芒廷维尤: 11.0 %芒廷维尤: 11.0 %菏泽市巨野县: 0.5 %菏泽市巨野县: 0.5 %西宁: 27.3 %西宁: 27.3 %西安: 2.4 %西安: 2.4 %西雅图: 0.5 %西雅图: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 5.3 %运城: 5.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.9 %郑州: 1.9 %郑州市管城回族区: 0.5 %郑州市管城回族区: 0.5 %重庆: 0.5 %重庆: 0.5 %长沙: 0.5 %长沙: 0.5 %阳泉: 0.5 %阳泉: 0.5 %青岛: 0.5 %青岛: 0.5 %其他其他Spain[]上海东莞兰州北京南京台州合肥合肥市肥东县唐山大连天津常州常德廊坊张家口成都扬州昆明晋城朝阳杭州桂林武汉沈阳济南济宁石家庄芒廷维尤菏泽市巨野县西宁西安西雅图贵阳运城邯郸郑州郑州市管城回族区重庆长沙阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads(2) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return