YANG Xiaohua, ZHANG Jinming, CAI Jianguo, LU Bo, LI Zhongyi, YE Xiaopeng, SONG Pengxiao. Research on Shape Coefficients of a High-Rise Multi-Tower Interconnected Structure Under Wind Load[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 108-114,40. doi: 10.13204/j.gyjzG22042810
Citation:
YANG Xiaohua, ZHANG Jinming, CAI Jianguo, LU Bo, LI Zhongyi, YE Xiaopeng, SONG Pengxiao. Research on Shape Coefficients of a High-Rise Multi-Tower Interconnected Structure Under Wind Load[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 108-114,40. doi: 10.13204/j.gyjzG22042810
YANG Xiaohua, ZHANG Jinming, CAI Jianguo, LU Bo, LI Zhongyi, YE Xiaopeng, SONG Pengxiao. Research on Shape Coefficients of a High-Rise Multi-Tower Interconnected Structure Under Wind Load[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 108-114,40. doi: 10.13204/j.gyjzG22042810
Citation:
YANG Xiaohua, ZHANG Jinming, CAI Jianguo, LU Bo, LI Zhongyi, YE Xiaopeng, SONG Pengxiao. Research on Shape Coefficients of a High-Rise Multi-Tower Interconnected Structure Under Wind Load[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 108-114,40. doi: 10.13204/j.gyjzG22042810
Taking a high-rise multi-tower interconnected structure in Zhuhai as an example, the surface wind pressure characteristics and shape coefficient distribution of complex high-connected multi-tower structures were studied, which could provide the calculation basis for the wind-resistant design of such structures to ensure the structural safety. CFD method was used to conduct numerical wind tunnel simulation of the high-rise multi-tower interconnected structure and surrounding disturbed buildings. The shape coefficients of main surfaces and local structures under different wind direction angles were analyzed, and compared with the physical wind tunnel test results and standard values of the load code. The shape coefficients of windward side of the structure was generally large in the middle and small on both sides, and there was interaction between multiple towers. On the podium, the larger absolute value of shape coefficients might be exist, and the oblique flow was easy to form larger wind pressure on the adjacent surfaces. Compared with the physical wind tunnel test results, the numerical simulation results were closer to the values of the load code, and the distribution was relatively more uniform. The concave surface of the high-altitude irregular connector produced larger shape coefficients, however, the influence on the whole structure was limited. In the wind-resistant design process, the interference between multiple towers and the influence of high-altitude irregular connectors should be considered.
JENDZELOVSKY N, ANTAL R. CFD and experimental study of wind pressure distribution on the high-rise building in the shape of an equilateral acute triangle[J/OL]. Fluids, 2021, 6(2).[2022-04-28].https://www.mdpi.com/2311-5521/6/2/81.
[7]
XING Q, QIAN J. CFD analysis of wind interference effects of three high-rise buildings[J]. Journal of Asian Architecture and Building Engineering, 2018, 17(3):487-494.
MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//24th Fluid Dynamics Conference, No. AIAA-93-2906. Orlando:Florida, 1993.
[16]
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. Aiaa Journal, 1994, 32(8):1598-1605.