Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHANG Han, YIN Chao, WANG Zhanghua, ZHAO Xingkui, WANG Shaoping, TIAN Wenbo. Study on Hydraulic Fracturing Mechanisms of Rock Landslides[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813
Citation: ZHANG Han, YIN Chao, WANG Zhanghua, ZHAO Xingkui, WANG Shaoping, TIAN Wenbo. Study on Hydraulic Fracturing Mechanisms of Rock Landslides[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 147-156. doi: 10.13204/j.gyjzG22032813

Study on Hydraulic Fracturing Mechanisms of Rock Landslides

doi: 10.13204/j.gyjzG22032813
  • Received Date: 2022-03-28
  • Hydraulic fracturing can cause instability and failure of rock masses, which is an important reason for inducing rock landslide. The failure process of rock masses caused by hydraulic fracturing was tested with cement mortar specimens and simulated by ABAQUS Software to reveal the hydraulic fracturing mechanism. Taking a rock slope in Letuan-Qingshiguan section of the national road G205 as an example, the landslide occurrence under high groundwater pressure was studied by numerical simulations, and the whole process of slope instability and failure reappeared. The results indicated that when the hydraulic fracturing occured, the water pressure on the fracture plane decreaseed rapidly but cracks were not through the plane, and there was still a little of residual strength for specimens. Combined with numerical simulations, it was confirmed that the hydraulic fracturing of rock masses was quasi-brittle failure, which included static stage, micro-crack propagation stage and macro-crack formation stage. There were three dangerous rock masses in the simulated rock slope, in which WYT3 was unstable in rainstorm and earthquake conditions. The crack developed in three stages under high water head pressure including slow developing, rapid developing, and propagating through stages. The slow development stage lasted longest, and the slope was unstable after the crack propagated through.
  • loading
  • [1]
    YU P, ZHANG Y, PENG X, et al. Evaluation of impact force of rock landslides acting on structures using discontinuous deformation analysis[J/OL]. Computers and Geotechnics, 2019, 114(1/2/3/4)[2022-03-28]. https://doi.org/10.1016/j.compgeo.2019.103137.
    [2]
    ZHAN J W, WANG Q, ZHANG W, et al. Soil-engineering properties and failure mechanisms of shallow landslides in soft-rock materials[J/OL]. Catena, 2019, 181[2022-03-28]. https://doi.org/10.1016/j.catena.2019.104093.
    [3]
    LIAO H M, YANG X G, LU G D, et al. Experimental study on the river blockage and landslide dam formation induced by rock slides[J/OL]. Engineering Geology, 2019, 261[2022-03-28]. https://doi.org/10.1016/j.enggeo.2019.105269.
    [4]
    RAJA N B, Çiçek,Türkoǧlu N,et al. Correction to:landslide susceptibility mapping of the sera river basin using logistic regression model[J/OL]. Natural Hazards, 2018,91(3)[2022-03-28]. https://doi.org/10.1007/s11069-017-3145-3.
    [5]
    ZHANG S, LI C, ZHANG L, et al. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network[J/OL]. Engineering Geology, 2019, 265[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105436.
    [6]
    詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报, 2007, 26(6):1173-1181.
    [7]
    WANG S, LI D Y, MITRI H, et al. Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy[J/OL]. Journal of Petroleum Science and Engineering, 2020, 193[2022-03-28].https://doi.org/10.1016/j.petrol.2020.107375.
    [8]
    LYU S F, WANG S W, CHEN X J, et al. Natural fractures in soft coal seams and their effect on hydraulic fracture propagation:A field study[J/OL]. Journal of Petroleum Science and Engineering, 2020,192[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.107255.
    [9]
    DEHGHAN A N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture[J/OL]. Engineering Fracture Mechanics, 2020, 240[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107330.
    [10]
    BAGHBANAN A, JING L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences,2006,44(5):704-719.
    [11]
    刘得潭,沈振中,徐力群,等.岩体水力劈裂临界水压力影响因素及机理研究[J]. 水利水运科学研究, 2018, 4(4):30-37.
    [12]
    PARK B Y, KIM K S, KWON S, et al. Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock[J]. Engineering Geology, 2002, 66(1):127-141.
    [13]
    XU J, ZHAI C, QIN L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane[J]. Journal of Natural Gas Science & Engineering, 2017, 40:79-90.
    [14]
    HOU Z K, CHENG H L, SUN S W, et al. Crack propagation and hydraulic fracturing in different lithologies[J]. Applied Geophysics, 2019, 16(2):243-251.
    [15]
    SUN C, ZHENG H, LIU W D, et al. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane[J/OL]. Engineering Fracture Mechanics, 2020,232[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2020.107056.
    [16]
    张健,王金意,荆铁亚,等.圆柱形页岩试样水力压裂模拟试验分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):69-74.
    [17]
    LIU B, JIN Y, CHEN M. Influence of vugs in fractured-vuggy carbonate reservoirs on hydraulic fracture propagation based on laboratory experiments[J]. Journal of Structural Geology, 2019, 124:143-150.
    [18]
    DIAZ M B, KIM K Y, JUNG S G. Effect of frequency during cyclic hydraulic fracturing and the process of fracture development in laboratory experiments[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134[2022-03-28].https://doi.org/10.1016/j.ijrmms.2020.104474.
    [19]
    胡少伟,王洋,孙岳阳,等.重力坝水力劈裂破坏结构变形分析[J]. 水利与建筑工程学报, 2020, 18(4):234-241.
    [20]
    WU H, KEMENY J, WU S. Experimental and numerical investigation of the punch-through shear test for mode II fracture toughness determination in rock[J]. Engineering Fracture Mechanics, 2017, 184:59-74.
    [21]
    邹前堡.三峡地区岩质边坡滑动面裂隙水力劈裂分析[J]. 东北水利水电, 2021, 39(7):36-39.
    [22]
    HADJIGEORGIOU J, ESMAIELI K, GRENON M. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model[J]. Tunnelling and Underground Space Technology, 2009, 24(3):296-308.
    [23]
    沈振中,甘磊,徐力群.岩体/混凝土结构水力劈裂研究进展[J]. 人民黄河, 2019, 41(10):148-154.
    [24]
    刘帅奇,马凤山,郭捷,等.水力劈裂裂隙扩展与软弱面作用机理离散元研究[J]. 东北大学学报(自然科学版), 2021, 42(3):444-456.
    [25]
    吴谦,王常明,宋朋燃,等.黄土陡坡降雨冲刷试验及其三维颗粒流流-固耦合模拟[J]. 岩土力学, 2014, 35(4):977-985.
    [26]
    SUN Z D, WANG L Q, ZHOU J Q, et al. A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression[J/OL]. Engineering Geology, 2020, 271[2022-03-28]. https://doi.org/10.1016/j.enggeo.2020.105618.
    [27]
    YU L K, WU X T, WANG Y D, et al. Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length[J/OL]. Renewable Energy, 2020, 152[2022-03-28].https://doi.org/10.1016/j.renene.2020.01.097.
    [28]
    LIU Z Y, SU L J, ZHANG C L, et al. Investigation of the dynamic process of the Xinmo landslide using the discrete element method[J/OL]. Computers and Geotechnics, 2020, 123[2022-03-28]. https://doi.org/10.1016/j.compgeo.2020.103561.
    [29]
    CHEN Z H, LI X B, DUSSEAULT M B, et al. Effect of excavation stress condition on hydraulic fracture behaviour[J/OL]. Engineering Fracture Mechanics, 2020, 226[2022-03-28].https://doi.org/10.1016/j.engfracmech.2020.106871.
    [30]
    徐爽,朱浮声,张俊.离散元法及其耦合算法的研究综述[J]. 力学与实践, 2013, 35(1):8-14

    ,19.
    [31]
    倪小东,赵帅龙,王媛,等.岩体水力劈裂的细观PFC-CFD联合分析[J]. 岩石力学与工程学报, 2015(增刊2):3862-3870.
    [32]
    ALNEASAN M, BEHNIA M, BAGHERPOUR R. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension[J/OL]. Engineering Geology, 2019, 259[2022-03-28].https://doi.org/10.1016/j.enggeo.2019.105188.
    [33]
    ZHANG K, YANG X J, CUI X B, et al. Numerical Simulation Analysis of NPR Anchorage Monitoring of Bedding Rock Landslide in Open-Pit Mine[J/OL]. Advances in Civil Engineering, 2020[2022-03-28]. https://doi.org/10.1155/2020/8241509.
    [34]
    ZHOU J, ZHANG L, PAN Z, et al. Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model[J]. Journal of Natural Gas Science and Engineering, 2017,40:592-602.
    [35]
    ZHANG Q, ZHANG X P, JI P Q. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2018, 105:79-93.
    [36]
    QIU H, ZHU Z, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete[J/OL]. Engineering Fracture Mechanics, 2019, 228[2022-03-28].https://doi.org/10.1016/j.engfracmech.2019.106798.
    [37]
    ZHANG Q, ZHANG X P, SUN W. Hydraulic fracturing in transversely isotropic tight sandstone reservoirs:A numerical study based on bonded-particle model approach[J/OL]. Journal of Structural Geology, 2020, 136[2022-03-28]. https://doi.org/10.1016/j.jsg.2020.104068.
    [38]
    史亚旋,徐力群,陶韵成,等.双轴压缩状态下岩体水力劈裂试验研究[J]. 三峡大学学报(自然科学版), 2020(3):23-28.
    [39]
    ZHANG J, TEIXEIRA J, LITTLE D N, et al. Prediction of fatigue crack growth behavior of chemically stabilized materials using simple monotonic fracture test integrated with computational cohesive zone modeling[J/OL]. Composites Part B:Engineering, 2020, 200(5)[2022-03-28]. https://doi.org/10.1016/j.compositesb.2020.108367.
    [40]
    LIU H, LIAO X, TANG X, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks[J/OL]. Journal of Petroleum Science and Engineering, 2021, 196(4)[2022-03-28]. https://doi.org/10.1016/j.petrol.2020.108042.
    [41]
    HUANG Z, BAI X, YIN C, et al. Vertical bearing capacity of a pile-liquefiable sandy soil foundation under horizontal seismic force[J/OL]. PLos One, 2020, 15(3)[2022-03-28]. https://doi.org/10.1371/journal.pone.0229532.
    [42]
    YIN C, LI H R, HU Z N, et al. Application of the terrestrial laser scanning in slope deformation monitoring:taking a highway slope as an example[J/OL]. Applied Sciences, 2020, 10(8)[2022-03-28].https://doi.org/10.3390/app10082808.
    [43]
    ZENG Q D, YAO J, SHAO J. Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach[J]. Computers and Geotechnics, 2019, 105:51-68.
    [44]
    LIU Z Y, PAN Z J, LI S B, et al. Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs[J/OL]. Energy, 2022, 241[2022-03-28].https://doi.org/10.1016/j.energy.2021.122845.
    [45]
    HOU Y N, PENG Y, CHEN Z X, et al. Investigating heterogeneous distribution of fluid pressure in hydraulic fractures during pulsating hydraulic fracturing[J/OL]. Journal of Petroleum Science and Engineering, 2022, 209[2022-03-28]. https://doi.org/10.1016/j.petrol.2021.109823.
    [46]
    LIU Y L, ZHENG X B, PENG X F, et al. Influence of natural fractures on propagation of hydraulic fractures in tight reservoirs during hydraulic fracturing[J/OL]. Marine and Petroleum Geology, 2022, 138[2022-03-28]. https://doi.org/10.1016/j.marpetgeo.2021.105505.
    [47]
    王国庆,谢兴华,速宝玉.岩体水力劈裂试验研究[J]. 采矿与安全工程学报, 2006, 23(4):480-484.
    [48]
    CHEN D, LI N, SUN W C, et al. Rupture properties and safety assessment of raw coal specimen rupture process under true triaxial hydraulic fracturing based on the source parameters and magnitude[J]. Process Safety and Environmental Protection, 2022, 158:661-673.
    [49]
    LI Y Y, HU W, WEI S Y, et al. Sensitivity analysis on the effect of natural fractures and injected fluid on hydraulic fracture propagation in a fractured reservoir[J/OL]. Engineering Fracture Mechanics, 2022, 263[2022-03-28]. https://doi.org/10.1016/j.engfracmech.2022.108288.
    [50]
    陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J]. 重庆交通大学学报(自然科学版),2003,22(3):18-22.
    [51]
    李家春,宋宗昌,侯少梁,等.北斗高精度定位技术在边坡变形监测中的应用[J].中国地质灾害与防治学报,2020,31(1):70-74

    ,78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return