Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MOU Kun-ting, WEI Yang, WANG Gao-fei, DONG Feng-hui, ZHENG Kai-qi. Mechanical Properties of Double-Tube Seawater and Sea Sand Concrete Columns with Built-in CFRP Tubes Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 1-9. doi: 10.13204/j.gyjzG22030410
Citation: WEI Kun-lun, LI Shuang-xi. Effect of Basalt Fiber on Impact Resistance of Rubber Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 42-47,128. doi: 10.13204/j.gyjzG22031210

Effect of Basalt Fiber on Impact Resistance of Rubber Concrete

doi: 10.13204/j.gyjzG22031210
  • Received Date: 2022-03-12
    Available Online: 2023-02-06
  • In order to study the effect of basalt fiber (BF) on the impact resistance of acicular rubber concrete, the impact resistance of acicular rubber concrete with different BF content, and lengths was analyzed through drop weight impact test, its microstructure was observed combined with scanning electron microscope (SEM) and the reinforcement mechanism was discussed. Finally, the results of impact resistance test were fitted by Weibull distribution model.The results showed that BF could improve the impact resistance of acicular rubber concrete. When the BF length was 12 mm and the content was 0.1%, the impact energy consumption of acicular rubber concrete was the largest, which was 54%. At this time, compared with ordinary concrete, the impact energy consumption of basalt fiber rubber concrete (BFRC) was increased by 516%; under the action of impact kinetic energy, acicular rubber could absorb deformation, rebound and release part of the consumed kinetic energy. BF dissipated part of the kinetic energy through adhesion and friction with the matrix for fiber drawing deformation and damage. The two materials jointly reduced the damage of impact kinetic energy to the concrete matrix and achieved the purpose of toughening and crack resistance;the impact times of BFRC could be statistically analyzed by two parameter Weibull distribution.
  • [1]
    晁夫奎, 王玉.我国废旧轮胎资源化技术应用现状及研究方向[J].再生资源与循环经济, 2021, 14(9):27-29.
    [2]
    郝贠洪, 樊磊, 韩燕, 等.冲击荷载作用下橡胶混凝土的损伤研究[J].振动与冲击, 2019, 38(17):73-80.
    [3]
    GUPTA T, SHARMA R K, CHAUDHARY S.Impact resistance of concrete containing waste rubber fiber and silica fume[J].International Journal of Impact Engineering, 2015, 83(9):76-87.
    [4]
    韩菊红, 袁群, 冯凌云, 等.橡胶混凝土的抗冲击性能研究[J].人民黄河, 2018, 40(11):107-109.
    [5]
    ABDELMONEM A, EL-FEKY M S, NASR E S A R, et al.Performance of high strength concrete containing recycled rubber[J].Construction and Building Materials, 2019, 227(10):1-10.
    [6]
    LI Y, ZHANG S, WANG R, et al.Potential use of waste tire rubber as aggregate in cement concrete:a comprehensive review[J].Construction and Building Materials, 2019, 225(11):1183-1201.
    [7]
    ISMAIL M K, HASSAN A, LACHEMI M.Effect of fiber type on impact and abrasion resistance of engineered cementitious composite[J].ACI Materials Journal, 2018, 115(6):957-968.
    [8]
    高真, 曹鹏, 孙新建, 等.玄武岩纤维混凝土抗压强度分析与微观表征[J].水力发电学报, 2018, 37(8):111-120.
    [9]
    XINZHONG WANG, JUN HE, et al.The effects of fiber length and volume on material proper-ties and crack resistance of basalt fiber reinforced concrete[J].Advances in Materials Science and Engineering, 2019, 2019(4):1-17.
    [10]
    王振山, 邢立新, 赵凯, 等.硫酸镁侵蚀环境下玄武岩纤维混凝土耐腐蚀及力学性能劣化研究[J].应用力学学报, 2020, 37(1):134-141.
    [11]
    朱涵, 刘昂, 于泳.低温下玄武岩纤维混凝土的抗冲击性能[J].材料科学与工程学报, 2018, 36(4):600-604.
    [12]
    ELIK Z, BINGL A F.Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC)[J].Materials and Structures, 2020, 53(3):1-16.
    [13]
    YOUSSF O, MILLS J E, HASSANLI R.Assessment of the mechanical performance of crumb rubber concrete[J].Construction and Building Materials, 2016, 125(8):175-183.
    [14]
    胡艳丽, 高培伟, 李富荣, 等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报, 2020, 23(1):85-92.
    [15]
    周浩, 贾彬, 黄辉, 等.玄武岩纤维混凝土抗压和抗折力学性能试验研究[J].工业建筑, 2019, 49(8):147-152.
    [16]
    SADRMOMTAZI A, TAHMOURESI B, SARADAR A.Effects of silica fume on mechanical strength and micros-tructure of basalt fiber reinforced cementitious composites (BFRCC)[J].Construction and Building Materials, 2018, 162(2):321-333.
    [17]
    贺东青, 王金歌, 王一鸣.橡胶掺量对CBFRC的物理力学性能影响[J].建筑材料学报, 2015, 18(5):857-860.
    [18]
    陈疏桐, 陈建东, 薛旭.玄武岩纤维橡胶混凝土力学及冻融性能试验研究[J].混凝土与水泥制品, 2020, 46(4):54-58.
    [19]
    高峰, 郝贠洪, 吴安利, 等.低模量聚酯纤维/水泥基复合材料抗冲击性能及损伤机制[J].复合材料学报, 2021, 38(11):3838-3849.
    [20]
    李冬, 丁一宁.钢筋与结构型合成纤维对混凝土抗冲击性能混杂效应的分析[J].振动与冲击, 2017, 36(2):123-128.
    [21]
    LI J J, NIU J G, WAN C J, et al.Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J].Construction and Building Materials, 2016, 118(8):27-35.
    [22]
    闻洋, 刘培培.橡胶混凝土抗冲击性能研究[J].硅酸盐通报, 2018, 37(3):792-799.
    [23]
    刘加平, 汤金辉, 韩方玉.现代混凝土增韧防裂原理及应用[J].土木工程学报, 2021, 54(10):47-54.
    [24]
    侯敏, 陶燕, 陶忠, 等.关于玄武岩纤维混凝土的增强机理研究[J].混凝土, 2020(2):67-71.
    [25]
    王立成, 王海涛, 刘汉勇.钢纤维轻骨料混凝土抗冲击性能试验研究与统计分析[J].大连理工大学学报, 2010, 50(4):557-563.
    [26]
    WEIBULL W.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics, 1951, 18(3):293-297.
    [27]
    刘问, 徐世烺, 李庆华, 等.等幅疲劳荷载作用下超高韧性水泥基复合材料弯曲疲劳寿命试验研究[J].建筑结构学报, 2012, 33(1):119-127.
    [28]
    OH B H.Fatigue life distribution of concrete forvarious stress levels[J].ACI Materials Journal, 1991, 88(2):191-198.
    [29]
    RAHMANI T, KIANI B, SHEKARCHI M, et al.Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test[J].Construction & Building Materials, 2012, 37(7):360-369.
  • Relative Articles

    [1]HE Zhengwei, CHEN Yuhan, GU Jinben, TAO Yi, DOU Yafen. Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 149-159. doi: 10.3724/j.gyjzG24032002
    [2]WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805
    [3]LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
    [4]ZHANG Peng, YANG Siqi, DENG Yu, NI Miao, LING Daoyuan. Research on Mechanical Properties of Bamboo Winding Composite Pipe Reinforced Thin-Walled Steel Tube Composite Structures Under Axical Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 62-68. doi: 10.3724/j.gyjzG23010801
    [5]YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
    [6]LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605
    [7]HUANG Hui, LU Sifang, ZHANG Xiang, JIA Bin, LU Yonggang. Anti-implosion Performances of Steel Pipes Strengthened with CFRP Sheets[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 211-215. doi: 10.13204/j.gyjzG20031209
    [8]ZHANG Ying, WANG Rui, ZHAO Hui, AN Guoqing. Mechanical Properties of Octagonal Hollow Concrete Filled Steel Tube Short Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 113-119. doi: 10.13204/j.gyjzG20122411
    [9]LI Xiaozhong, ZHANG Sumei. Axial Compression Performance and Mechanical Property of CFST Columns Reinforced with Outer Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 122-130. doi: 10.13204/j.gyjzG22072710
    [10]CHEN Zongping, NING Fan. Experimental Research on Mechanical Properties of Concrete-filled Double-skin Square Steel Tubular (Oblique Inside and Straight Outside) Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 8-16. doi: 10.13204/j.gyjzG20102106
    [11]HU Xiaopeng, WU Xiao, PENG Gang. CALCULATION MODEL OF EARLY CARBONATION DEPTH OF MINERAL ADMIXTURE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 106-111. doi: 10.13204/j.gyjzG19112905
    [12]XIAO Chengzhi, GE Chenhe, WANG Zihan, SI Yu. TEST AND NUMERICAL ANALYSIS OF MECHANICAL PROPERTIES OF GROUTED MICRO-STEEL-PIPE PILES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 85-92. doi: 10.13204/j.gyjz202006014
    [13]CUI Yubo, WANG Jingfeng, SHEN Qihan, DING Zhaodong, LI Zhipeng. ANALYSIS AND DESIGN OF REINFORCED CONCRETE STUB COLUMNS WITH REBAR HRB635 UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 1-10. doi: 10.13204/j.gyjzG20062707
    [14]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [15]CHEN Zongping, ZHOU Ji. COMPARATIVE ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF RECYCLED CONCRETE SHORT COLUMN FILLED CIRCULAR AND SQUARE STEEL TUBE AFTER BEING SUBJECTED TO HIGH TEMPERATURES AND WATER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 150-157. doi: 10.13204/j.gyjz202002023
    [16]ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
    [17]Cao Dan Zhang Dachang, . COMPARISON AND ANALYSIS OF STEEL TUBULAR UNDER AXIAL COMPRESSION IN CHINESE AND FOREIGN CODES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 169-174. doi: 10.13204/j.gyjz201506033
    [18]Wang Xiaolu, Zha Xiaoxiong, Cang Youqing, Yu Min. EXPERIMENTAL AND THEORETICAL RESEARCH ON GFRP-CFST COMPOSITE COLUMN UNDER AXIAL COMPRESSIVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 25-29. doi: 10.13204/j.gyjz201106005
    [19]Liu Xiao, Wang Bing, Wang Lianguang. THE THEORETIC RESEARCH ON FLEXURAL BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE WITH H-SHAPED SECTION OR CROSS STEEL SECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 95-97. doi: 10.13204/j.gyjz200807024
    [20]Li Guangxing, Cai Jian, Yang Chun, Lin Fan. STUDY ON EQUIVALENT BEAM CALCULATING MODEL OF REINFORCED CONCRETE FLAT SLAB-T-COLUMN STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 54-56. doi: 10.13204/j.gyjz200706014
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.7 %FULLTEXT: 5.7 %META: 90.1 %META: 90.1 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.5 %其他: 19.5 %其他: 3.7 %其他: 3.7 %Elizabeth City: 0.2 %Elizabeth City: 0.2 %Girard: 0.5 %Girard: 0.5 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.2 %Hollywood: 0.2 %Malvern: 0.5 %Malvern: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Norman: 2.7 %Norman: 2.7 %Philadelphia: 0.2 %Philadelphia: 0.2 %Rochester: 0.2 %Rochester: 0.2 %State College: 0.2 %State College: 0.2 %Wixom: 0.5 %Wixom: 0.5 %上海: 1.7 %上海: 1.7 %上饶: 0.2 %上饶: 0.2 %丹佛: 0.5 %丹佛: 0.5 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %克孜勒苏: 0.2 %克孜勒苏: 0.2 %兰州: 0.5 %兰州: 0.5 %利特尔顿: 0.2 %利特尔顿: 0.2 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %北京: 5.7 %北京: 5.7 %华盛顿: 0.2 %华盛顿: 0.2 %南京: 2.2 %南京: 2.2 %南昌: 0.2 %南昌: 0.2 %卡尔斯鲁厄: 0.2 %卡尔斯鲁厄: 0.2 %卡罗尔顿: 0.2 %卡罗尔顿: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %商丘: 0.2 %商丘: 0.2 %圣路易斯: 0.2 %圣路易斯: 0.2 %坦佩: 0.2 %坦佩: 0.2 %士嘉堡: 0.2 %士嘉堡: 0.2 %大克罗伊茨: 0.2 %大克罗伊茨: 0.2 %大连: 0.5 %大连: 0.5 %天津: 1.7 %天津: 1.7 %娄底: 0.2 %娄底: 0.2 %安大略: 0.2 %安大略: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 1.2 %密蘇里城: 1.2 %巴拿马城: 0.5 %巴拿马城: 0.5 %布鲁克林区: 0.2 %布鲁克林区: 0.2 %常德: 0.2 %常德: 0.2 %广州: 3.4 %广州: 3.4 %廊坊: 0.7 %廊坊: 0.7 %开封: 0.2 %开封: 0.2 %张家口: 0.2 %张家口: 0.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.2 %晋城: 0.2 %杭州: 2.2 %杭州: 2.2 %查塔努加: 0.2 %查塔努加: 0.2 %柳州: 0.2 %柳州: 0.2 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %武汉: 1.7 %武汉: 1.7 %法拉盛: 0.2 %法拉盛: 0.2 %泽西: 0.5 %泽西: 0.5 %洛杉矶: 0.7 %洛杉矶: 0.7 %济南: 0.7 %济南: 0.7 %海口: 0.5 %海口: 0.5 %淮南: 0.2 %淮南: 0.2 %深圳: 0.2 %深圳: 0.2 %温尼伯: 0.5 %温尼伯: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %濮阳: 1.5 %濮阳: 1.5 %瑟普赖斯: 0.7 %瑟普赖斯: 0.7 %盐城: 0.2 %盐城: 0.2 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.7 %福州: 0.7 %科珀斯克里斯蒂: 0.2 %科珀斯克里斯蒂: 0.2 %纽约: 0.5 %纽约: 0.5 %绍曾德奥克斯: 0.2 %绍曾德奥克斯: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 5.7 %芒廷维尤: 5.7 %苏州: 1.0 %苏州: 1.0 %蒙哥马利: 0.5 %蒙哥马利: 0.5 %襄阳: 0.2 %襄阳: 0.2 %西宁: 9.1 %西宁: 9.1 %西安: 2.2 %西安: 2.2 %诺沃克: 0.2 %诺沃克: 0.2 %诺瓦托: 0.7 %诺瓦托: 0.7 %贝瑟默: 0.5 %贝瑟默: 0.5 %贵阳: 0.2 %贵阳: 0.2 %迈阿密: 0.2 %迈阿密: 0.2 %运城: 2.2 %运城: 2.2 %连云港: 0.2 %连云港: 0.2 %迪拜: 0.2 %迪拜: 0.2 %郑州: 1.7 %郑州: 1.7 %都伯林: 0.2 %都伯林: 0.2 %镇江: 0.2 %镇江: 0.2 %长春: 0.5 %长春: 0.5 %长沙: 0.5 %长沙: 0.5 %青岛: 1.0 %青岛: 1.0 %麦迪逊: 0.2 %麦迪逊: 0.2 %其他其他Elizabeth CityGirardGwynn OakHollywoodMalvernNahantNormanPhiladelphiaRochesterState CollegeWixom上海上饶丹佛伊利诺伊州克孜勒苏兰州利特尔顿加利福尼亚北京华盛顿南京南昌卡尔斯鲁厄卡罗尔顿厦门台州合肥呼和浩特哈尔滨商丘圣路易斯坦佩士嘉堡大克罗伊茨大连天津娄底安大略宜昌宣城密蘇里城巴拿马城布鲁克林区常德广州廊坊开封张家口徐州成都扬州昆明晋城杭州查塔努加柳州森尼韦尔武汉法拉盛泽西洛杉矶济南海口淮南深圳温尼伯温州湖州濮阳瑟普赖斯盐城盘锦石家庄福州科珀斯克里斯蒂纽约绍曾德奥克斯绵阳芒廷维尤苏州蒙哥马利襄阳西宁西安诺沃克诺瓦托贝瑟默贵阳迈阿密运城连云港迪拜郑州都伯林镇江长春长沙青岛麦迪逊

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (126) PDF downloads(0) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return