Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MOU Kun-ting, WEI Yang, WANG Gao-fei, DONG Feng-hui, ZHENG Kai-qi. Mechanical Properties of Double-Tube Seawater and Sea Sand Concrete Columns with Built-in CFRP Tubes Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 1-9. doi: 10.13204/j.gyjzG22030410
Citation: WANG Zi-hao, LI Cheng-gao, XIAN Gui-jun, XIONG Hao, BAI Jie, XU Guo-wen. Research on Bearing Performance of Multi-Bundle Parallel CFRP Cable Anchorage System[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 18-27. doi: 10.13204/j.gyjzG22022314

Research on Bearing Performance of Multi-Bundle Parallel CFRP Cable Anchorage System

doi: 10.13204/j.gyjzG22022314
  • Received Date: 2022-02-23
    Available Online: 2023-02-06
  • Compared with the steel wires, carbon fiber reinforced polymer (CFRP) composite has the excellent properties, such as light weight, high strength, superior corrosion, fatigue and creep resistance. When CFRP are used in civil engineering structures, the weight of the structures can be reduced and life can be prolonged. Unidirectional CFRP has the typical orthotropic characteristics with poor shear and transverse compressive properties, which makes the anchorage of CFRP to become a difficult problem. In this paper, the experiment and finite element simulation were used to study the bearing performance and stress distribution of multi-bundle parallel carbon fiber cables anchorage system. The results showed that when the multi-cone anchors were used to anchor multi-bundle parallel carbon fiber cables, the stress concentration caused by the anchors would destory the surface of the CFRP bars at the load end, resulting in a decrease of bearing capacity of the CFRP cables. A finite element simulation method was proposed with the interface behavior of CFRP bars and epoxy resin characterized by bond-slip constitutive. The failure modes and stress distribution of anchorage system of CFRP cable were studied, the damage mechanism of carbon fiber cable caused by the anchor extrusion was revealed, and the ultimate bearing capacity of anchorage of CFRP cables was predicted. Finally, through optimizing the anchorage system, it was found that increaseing anchoring length for carbon fiber cable could improve the anchoring efficiency of the anchoring system from 70% to 90%.
  • [1]
    张强先, 赵华伟, 方园, 等.悬索桥主缆钢丝腐蚀与防护的应用进展[J].南京工业大学学报(自然科学版), 2020, 42(3):278-283.
    [2]
    MEIER U, FARSHAD M.Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials[J].Journal of Computer-Aided Materials Design, 1996, 3(1):379-384.
    [3]
    常鑫泉, 汪昕, 刘长源, 等.预应力FRP板加固RC梁抗弯性能有限元模型可靠性评价[J].南京工业大学学报(自然科学版), 2021, 43(3):318-328.
    [4]
    冯博.大吨位FRP拉索锚固体系及长期性能研究[D].南京:东南大学, 2019.
    [5]
    韩娟, 刘伟庆, 方海.纤维增强树脂基复合材料在土木基础设施领域中的应用[J].南京工业大学学报(自然科学版), 2020, 42(5):543-554.
    [6]
    FENG B, WANG X, WU Z.Evaluation and prediction of carbon fiber-reinforced polymer cable anchorage for large capacity[J].Advances in Structural Engineering, 2019, 22(8):1952-1964.
    [7]
    李承高.碳/玻璃纤维复合杆体的锚固及其耐久性能研究[D].哈尔滨:哈尔滨工业大学, 2019.
    [8]
    WANG L C, ZHANG J Y, XU J, et al.Anchorage systems of CFRP cables in cable structures:a review[J].Construction and Building Materials, 2018, 160:82-99.
    [9]
    SCHMIDT J W, BENNITZ A, TALJSTEN B, et al.Mechanical anchorage of FRP tendons:a literature review[J].Construction and Building Materials, 2012, 32:110-121.
    [10]
    ZHANG B, BENMOKRANE B, EBEAD U A A.Design and evaluation of fiber-reinforced polymer bond-type anchorages and ground anchors[J].International Journal of Geomechanics, 2006, 6(3):166-175.
    [11]
    LIU Y, ZWINGMANN B, SCHLAICH M.Carbon fiber reinforced polymer for cable structures:a review[J].Polymers, 2015, 7(10):2078-2099.
    [12]
    李承高, 郭瑞, 黄翔宇, 等.碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形-挤压锚固机制[J].南京工业大学学报(自然科学版), 2021, 43(3):358-365.
    [13]
    ZHANG B R, BENMOKRANE B.Design and evaluation of a new bond-type anchorage system for fiber reinforced polymer tendons[J].Canadian Journal of Civil Engineering, 2004, 31(1):14-26.
    [14]
    ZHANG B R, BENMOKRANE B, CHENNOUF A, et al.Tensile behavior of FRP tendons for prestressed ground anchors[J].Journal of Composites for Construction, 2001, 5(2):85-93.
    [15]
    MEI K, SERACINO R, LÜ Z.An experimental study on bond-type anchorages for carbon fiber-reinforced polymer cables[J].Construction and Building Materials, 2016, 106:584-591.
    [16]
    吕志涛, 梅葵花.国内首座CFRP索斜拉桥的研究[J].土木工程学报, 2007(1):54-59.
    [17]
    SHI J Z, XU P C, WU Z S, et al.A novel anchor method for multi-tendon FRP cable:manufacturing and experimental study[J].Journal of Composites for Construction, 2015, 19(6), 04015010.
    [18]
    WANG X, XU P, WU Z, et al.A novel anchor method for multi-tendon FRP cable:concept and FE study[J].Composite Structures, 2015, 120:552-564.
    [19]
    FANG Z, ZHANG K, TU B.Experimental investigation of a bond-type anchorage system for multiple FRP tendons[J].Engineering Structures, 2013, 57:364-373.
    [20]
    ZHANG K, FANG Z, NANNI A, et al.Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J].Journal of Composites for Construction, 2015, 19(4):04014075.1-04014075.8.
    [21]
    吴敬宇.碳纤维拉索锚固体系及其性能研究[D].哈尔滨:哈尔滨工业大学, 2018.
    [22]
    杨龙.碳纤维拉索锚具及水浸环境对其疲劳性能的影响研究[D].桂林:桂林理工大学, 2020.
    [23]
    朱万旭, 杨龙, 朱世聪, 等.碳纤维筋束多级锥体锚具的设计和试验研究[J].工业建筑, 2020, 50(8):177-181.
    [24]
    LI C G, XIAN G J.Novel wedge-shaped bond anchorage system for pultruded CFRP plates[J].Materials and Structures, 2018, 51(6):162.1-162.14.
    [25]
    中国人民共和国国家质量监督检验检疫总局.纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S].北京:中国标准出版社, 2005.
    [26]
    中国国家标准化管理委员会.预应力筋用锚具、夹具和连接器:GB/T 14370-2015[S].北京:中国标准出版社, 2015.
    [27]
    LI F, ZHAO Q L, CHEN H S, et al.Prediction of tensile capacity based on cohesive zone model of bond anchorage for fiber-reinforce dpolymer tendon[J].Composite Structures, 2010, 92(10):2400-2405.
    [28]
    WANG Z, LI C, SUI L, et al.Effects of adhesive property and thickness on the bond performance between carbon fiber reinforced polymer laminate and steel[J].Thin-Walled Structures, 2021, 158.DOI: 10.1016/j.tws.2020.107176.
    [29]
    PARK J S, JUNG W T, KANG J Y, et al.Behavior characteristics of bonded type anchorage for CFRP tendon[J].Engineering, 2013, 5(11):909-918.
    [30]
    ZHOU J, WANG X, PENG Z, et al.Failure mechanism and optimization of fiber-reinforced polymer cable-anchor system based on 3D finite element model[J].Engineering Structures, 2021, 243.DOI: 10.106/j.engstruct.2021.112664.
    [31]
    王梓豪.碳纤维复合材料平行拉索用多锥形锚固体系研究[D].哈尔滨:哈尔滨工业大学, 2021.
    [32]
    HASHIN Z.Fatigue failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics, 1981, 48(4):846-852.
    [33]
    张攀.碳纤维复合材料平行束索及锚具受力性能与设计方法研究[D].北京:清华大学, 2014.
  • Relative Articles

    [1]HE Zhengwei, CHEN Yuhan, GU Jinben, TAO Yi, DOU Yafen. Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 149-159. doi: 10.3724/j.gyjzG24032002
    [2]WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805
    [3]LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
    [4]ZHANG Peng, YANG Siqi, DENG Yu, NI Miao, LING Daoyuan. Research on Mechanical Properties of Bamboo Winding Composite Pipe Reinforced Thin-Walled Steel Tube Composite Structures Under Axical Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 62-68. doi: 10.3724/j.gyjzG23010801
    [5]YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
    [6]LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605
    [7]HUANG Hui, LU Sifang, ZHANG Xiang, JIA Bin, LU Yonggang. Anti-implosion Performances of Steel Pipes Strengthened with CFRP Sheets[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 211-215. doi: 10.13204/j.gyjzG20031209
    [8]ZHANG Ying, WANG Rui, ZHAO Hui, AN Guoqing. Mechanical Properties of Octagonal Hollow Concrete Filled Steel Tube Short Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 113-119. doi: 10.13204/j.gyjzG20122411
    [9]LI Xiaozhong, ZHANG Sumei. Axial Compression Performance and Mechanical Property of CFST Columns Reinforced with Outer Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 122-130. doi: 10.13204/j.gyjzG22072710
    [10]CHEN Zongping, NING Fan. Experimental Research on Mechanical Properties of Concrete-filled Double-skin Square Steel Tubular (Oblique Inside and Straight Outside) Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 8-16. doi: 10.13204/j.gyjzG20102106
    [11]HU Xiaopeng, WU Xiao, PENG Gang. CALCULATION MODEL OF EARLY CARBONATION DEPTH OF MINERAL ADMIXTURE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 106-111. doi: 10.13204/j.gyjzG19112905
    [12]XIAO Chengzhi, GE Chenhe, WANG Zihan, SI Yu. TEST AND NUMERICAL ANALYSIS OF MECHANICAL PROPERTIES OF GROUTED MICRO-STEEL-PIPE PILES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 85-92. doi: 10.13204/j.gyjz202006014
    [13]CUI Yubo, WANG Jingfeng, SHEN Qihan, DING Zhaodong, LI Zhipeng. ANALYSIS AND DESIGN OF REINFORCED CONCRETE STUB COLUMNS WITH REBAR HRB635 UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 1-10. doi: 10.13204/j.gyjzG20062707
    [14]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [15]CHEN Zongping, ZHOU Ji. COMPARATIVE ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF RECYCLED CONCRETE SHORT COLUMN FILLED CIRCULAR AND SQUARE STEEL TUBE AFTER BEING SUBJECTED TO HIGH TEMPERATURES AND WATER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 150-157. doi: 10.13204/j.gyjz202002023
    [16]ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
    [17]Cao Dan Zhang Dachang, . COMPARISON AND ANALYSIS OF STEEL TUBULAR UNDER AXIAL COMPRESSION IN CHINESE AND FOREIGN CODES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 169-174. doi: 10.13204/j.gyjz201506033
    [18]Wang Xiaolu, Zha Xiaoxiong, Cang Youqing, Yu Min. EXPERIMENTAL AND THEORETICAL RESEARCH ON GFRP-CFST COMPOSITE COLUMN UNDER AXIAL COMPRESSIVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 25-29. doi: 10.13204/j.gyjz201106005
    [19]Liu Xiao, Wang Bing, Wang Lianguang. THE THEORETIC RESEARCH ON FLEXURAL BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE WITH H-SHAPED SECTION OR CROSS STEEL SECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 95-97. doi: 10.13204/j.gyjz200807024
    [20]Li Guangxing, Cai Jian, Yang Chun, Lin Fan. STUDY ON EQUIVALENT BEAM CALCULATING MODEL OF REINFORCED CONCRETE FLAT SLAB-T-COLUMN STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 54-56. doi: 10.13204/j.gyjz200706014
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.7 %FULLTEXT: 5.7 %META: 90.1 %META: 90.1 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.5 %其他: 19.5 %其他: 3.7 %其他: 3.7 %Elizabeth City: 0.2 %Elizabeth City: 0.2 %Girard: 0.5 %Girard: 0.5 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.2 %Hollywood: 0.2 %Malvern: 0.5 %Malvern: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Norman: 2.7 %Norman: 2.7 %Philadelphia: 0.2 %Philadelphia: 0.2 %Rochester: 0.2 %Rochester: 0.2 %State College: 0.2 %State College: 0.2 %Wixom: 0.5 %Wixom: 0.5 %上海: 1.7 %上海: 1.7 %上饶: 0.2 %上饶: 0.2 %丹佛: 0.5 %丹佛: 0.5 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %克孜勒苏: 0.2 %克孜勒苏: 0.2 %兰州: 0.5 %兰州: 0.5 %利特尔顿: 0.2 %利特尔顿: 0.2 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %北京: 5.7 %北京: 5.7 %华盛顿: 0.2 %华盛顿: 0.2 %南京: 2.2 %南京: 2.2 %南昌: 0.2 %南昌: 0.2 %卡尔斯鲁厄: 0.2 %卡尔斯鲁厄: 0.2 %卡罗尔顿: 0.2 %卡罗尔顿: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %商丘: 0.2 %商丘: 0.2 %圣路易斯: 0.2 %圣路易斯: 0.2 %坦佩: 0.2 %坦佩: 0.2 %士嘉堡: 0.2 %士嘉堡: 0.2 %大克罗伊茨: 0.2 %大克罗伊茨: 0.2 %大连: 0.5 %大连: 0.5 %天津: 1.7 %天津: 1.7 %娄底: 0.2 %娄底: 0.2 %安大略: 0.2 %安大略: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 1.2 %密蘇里城: 1.2 %巴拿马城: 0.5 %巴拿马城: 0.5 %布鲁克林区: 0.2 %布鲁克林区: 0.2 %常德: 0.2 %常德: 0.2 %广州: 3.4 %广州: 3.4 %廊坊: 0.7 %廊坊: 0.7 %开封: 0.2 %开封: 0.2 %张家口: 0.2 %张家口: 0.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.2 %晋城: 0.2 %杭州: 2.2 %杭州: 2.2 %查塔努加: 0.2 %查塔努加: 0.2 %柳州: 0.2 %柳州: 0.2 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %武汉: 1.7 %武汉: 1.7 %法拉盛: 0.2 %法拉盛: 0.2 %泽西: 0.5 %泽西: 0.5 %洛杉矶: 0.7 %洛杉矶: 0.7 %济南: 0.7 %济南: 0.7 %海口: 0.5 %海口: 0.5 %淮南: 0.2 %淮南: 0.2 %深圳: 0.2 %深圳: 0.2 %温尼伯: 0.5 %温尼伯: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %濮阳: 1.5 %濮阳: 1.5 %瑟普赖斯: 0.7 %瑟普赖斯: 0.7 %盐城: 0.2 %盐城: 0.2 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.7 %福州: 0.7 %科珀斯克里斯蒂: 0.2 %科珀斯克里斯蒂: 0.2 %纽约: 0.5 %纽约: 0.5 %绍曾德奥克斯: 0.2 %绍曾德奥克斯: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 5.7 %芒廷维尤: 5.7 %苏州: 1.0 %苏州: 1.0 %蒙哥马利: 0.5 %蒙哥马利: 0.5 %襄阳: 0.2 %襄阳: 0.2 %西宁: 9.1 %西宁: 9.1 %西安: 2.2 %西安: 2.2 %诺沃克: 0.2 %诺沃克: 0.2 %诺瓦托: 0.7 %诺瓦托: 0.7 %贝瑟默: 0.5 %贝瑟默: 0.5 %贵阳: 0.2 %贵阳: 0.2 %迈阿密: 0.2 %迈阿密: 0.2 %运城: 2.2 %运城: 2.2 %连云港: 0.2 %连云港: 0.2 %迪拜: 0.2 %迪拜: 0.2 %郑州: 1.7 %郑州: 1.7 %都伯林: 0.2 %都伯林: 0.2 %镇江: 0.2 %镇江: 0.2 %长春: 0.5 %长春: 0.5 %长沙: 0.5 %长沙: 0.5 %青岛: 1.0 %青岛: 1.0 %麦迪逊: 0.2 %麦迪逊: 0.2 %其他其他Elizabeth CityGirardGwynn OakHollywoodMalvernNahantNormanPhiladelphiaRochesterState CollegeWixom上海上饶丹佛伊利诺伊州克孜勒苏兰州利特尔顿加利福尼亚北京华盛顿南京南昌卡尔斯鲁厄卡罗尔顿厦门台州合肥呼和浩特哈尔滨商丘圣路易斯坦佩士嘉堡大克罗伊茨大连天津娄底安大略宜昌宣城密蘇里城巴拿马城布鲁克林区常德广州廊坊开封张家口徐州成都扬州昆明晋城杭州查塔努加柳州森尼韦尔武汉法拉盛泽西洛杉矶济南海口淮南深圳温尼伯温州湖州濮阳瑟普赖斯盐城盘锦石家庄福州科珀斯克里斯蒂纽约绍曾德奥克斯绵阳芒廷维尤苏州蒙哥马利襄阳西宁西安诺沃克诺瓦托贝瑟默贵阳迈阿密运城连云港迪拜郑州都伯林镇江长春长沙青岛麦迪逊

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (224) PDF downloads(6) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return