Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MOU Kun-ting, WEI Yang, WANG Gao-fei, DONG Feng-hui, ZHENG Kai-qi. Mechanical Properties of Double-Tube Seawater and Sea Sand Concrete Columns with Built-in CFRP Tubes Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 1-9. doi: 10.13204/j.gyjzG22030410
Citation: CHEN Hang-jie, HE Fei, WANG Xu, CHEN Ming-wei. Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 186-192,213. doi: 10.13204/j.gyjzG22012005

Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures

doi: 10.13204/j.gyjzG22012005
  • Received Date: 2022-01-20
    Available Online: 2023-02-06
  • Large scale construction projects have been carried out on varieties of cold areas with deepening of the Western Development and the Northeast Revitalization Strategy. To ensure the life of construction projects and maintain their normal working states in service periods, the higher bearing capacity and stability are needed to keep for frozen soil and structures. It is characteristic of frozen soil-structure interfaces that the frozen mechanics is the most direct mirror, and the roughness of interfaces is one of important factors influencing characteristics. Therefore,taking roughness as an influencing factor, based on the existing scientific research achievements of shear test research on frozen soil-structure interfaces at home and abroad, it was systematically analyzed from roughness evaluation, effect laws of roughness on mechanical properties and microscopic mechanisms. Based on the Gompertz model, a constitutive model between shear stress and displacement on interfaces was presented by considering the effect of roughness, which could well describe the evolution laws between stress and displacement of interfaces.
  • [1]
    胡黎明, 濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报, 2001, 23(4):431-435.
    [2]
    UESUGI M, KISHIDA H, TSUBAKIHARA Y.Behavior of sand particles in sand-steel friction[J].Soils and Foundations, 1988, 28(1):107-118.
    [3]
    ROMAN D, HRYCIW M I.Behavior of sand particles around rigid ribbed inclusions during shear[J].Soils and Foundations, 1993, 33(3):1-13.
    [4]
    王天亮, 王海航, 王鸥, 等.粉土与凹槽结构面抗剪强度特性试验研究[J].北京交通大学学报, 2019, 43(3):115-121.
    [5]
    吉延峻, 贾昆, 俞祁浩, 等.现浇混凝土-冻土接触面冻结强度直剪试验研究[J].冰川冻土, 2017, 39(1):86-91.
    [6]
    赵联桢, 杨平, 王海波.大型多功能冻土-结构接触面循环直剪系统研制及应用[J].岩土工程学报, 2013, 35(4):707-713.
    [7]
    孙厚超, 杨平, 王国良.冻黏土与结构接触界面层单剪力学特性试验[J].农业工程学报, 2015, 31(9):57-62.
    [8]
    ALDAEEF A A, RAYHANI M T.Pile-soil interface characteristics in ice-poor frozen ground under varying exposure temperature[J].Cold Regions Science and Technology, 2021, 191.DOI: 10.1016/j.coldregions.2021.103377.
    [9]
    金子豪, 杨奇, 陈琛, 等.粗糙度对混凝土-砂土接触面力学特性的影响试验研究[J].岩石力学与工程学报, 2018, 37(3):754-765.
    [10]
    潘一鸣.冻土-混凝土接触面剪切力学性质试验研究[D].长春:吉林大学, 2020.
    [11]
    杨晨.黄土-基岩接触面特性的环剪试验研究[D].咸阳:西北农林科技大学, 2019.
    [12]
    张嘎, 张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报, 2004, 26(1):21-25.
    [13]
    王永洪, 张明义, 刘俊伟, 等.接触面粗糙度对黏性土-混凝土界面剪切特性影响研究[J].工业建筑, 2017, 47(10):93-97.
    [14]
    杨进财.高温冻土-混凝土接触面剪切蠕变特性试验研究[D].兰州:兰州交通大学, 2020.
    [15]
    王海航.季冻区桩-土接触面力学性能及冻拔力试验研究[D].石家庄:石家庄铁道大学, 2019.
    [16]
    周国庆, 夏红春, 赵光思.深部土-结构接触面与界面层力学特性的直接剪切试验[J].煤炭学报, 2008, 45(10):1157-1162.
    [17]
    田建勃, 韩晓雷, 刘江元.砂土与混凝土接触面力学特性大型单剪试验研究[J].工业建筑, 2012, 42(7):110-114.
    [18]
    周小文, 龚壁卫, 丁红顺, 等.砾石垫层-混凝土接触面力学特性单剪试验研究[J].岩土工程学报, 2005, 27(8):876-880.
    [19]
    FROST J D, DEJONG J T, RECALDE M.Shear failure behavior of granular-continuum interfaces[J].Engineering Fracture Mechanics, 2002, 69(17):2029-2048.
    [20]
    吕鹏, 刘建坤, 崔颖辉.冻土-混凝土接触面动剪强度研究[J].岩土力学, 2013, 34(增刊2):180-183.
    [21]
    何菲, 王旭, 蒋代军, 等.关于冻土与结构接触面特性研究的几点思考[J].地下空间与工程学报, 2016, 12(增刊1):133-139.
    [22]
    崔托维奇H A.冻土力学[M].张长庆, 朱元林, 译.北京:科学出版社, 1985:178-183.
    [23]
    邱国庆, 刘经仁, 刘鸿绪.冻土学辞典[M].兰州:甘肃科学技术出版社, 1994:115-117.
    [24]
    石泉彬, 杨平, 王国良.人工冻结砂土与结构接触面冻结强度试验研究[J].岩石力学与工程学报, 2016, 35(10):2142-2151.
    [25]
    孙厚超, 杨平, 王国良.冻土与结构接触界面层力学试验系统研制及应用[J].岩土力学, 2014, 35(12):3636-3641

    , 3643.
    [26]
    HUCK P J, LIBER T, CHIAPETTA R L, et al.Dynamic response of soil-concrete interface at high pressure[J].Illinois Institute of Technical Research Institute, 1974:132-141.
    [27]
    王涛.粗糙度对砂土-混凝土接触面力学特性影响的试验研究[J].铁道勘察, 2016, 42(6):46-49.
    [28]
    CLOUGH G W, DUNCAN J M.Finite element analyses of retaining wall behavior[J].Journal of Soil Mechanic and Foundation Division, ASCE, 1971, 97(12):1657-1673.
    [29]
    BRANDT J R T.Behavior of soil-concrete interfaces[D].Edmonton:University of Alberta, 1985.
    [30]
    彭凯, 朱俊高, 冯树荣, 等.考虑剪胀与软化的接触面弹塑性模型[J].岩石力学与工程学报, 2013, 32(增刊2):3979-3986.
    [31]
    陈良致, 温智, 董盛时, 等.青藏冻结粉土与玻璃钢接触面本构模型研究[J].冰川冻土, 2016, 38(2):402-408.
    [32]
    何菲.冻结粉土-混凝土界面非线性剪切蠕变特性研究[D].兰州:兰州交通大学, 2019.
    [33]
    夏红春.基于应变梯度塑性理论的土-结构接触面本构模型[J].工业建筑, 2015, 45(6):87-92.
    [34]
    杨林德, 刘齐建.土-结构物接触面统计损伤本构模型[J].地下空间与工程学报, 2006(1):79-82, 86.
    [35]
    杨平, 赵联桢, 王国良.冻土与结构接触面循环剪切损伤模型[J].岩土力学, 2016, 37(5):1217-1223.
    [36]
    王吉权, 邱立春, 朱荣胜, 等.龚帕兹曲线参数估计方法及应用研究[J].数学的实践与认识, 2009, 39(21):74-79.
    [37]
    吕鹏, 刘建坤.冻土与混凝土接触面直剪试验研究[J].铁道学报, 2015, 37(2):106-110.
    [38]
    BIGGAR K W, SEGO D C.The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils[J].Canadian Geotechnical Jounral, 2011, 30(2):319-337.
    [39]
    BIGGAR K W, SEGO D C.Field pile load tests in saline permafrost.I.Test procedures and results[J].Canadian Geotechnical Journal, 2011, 30(1):34-35.
    [40]
    安德斯兰德 O B, 洛达尼 B.冻土工程[M]. 2版.杨让宏, 李勇, 译.北京:中国建筑工业出版社, 2011.
    [41]
    温智, 俞祁浩, 马巍, 等.青藏粉土-玻璃钢接触面力学特性直剪试验研究[J].岩土力学, 2013, 34(增刊2):45-50.
  • Relative Articles

    [1]HE Zhengwei, CHEN Yuhan, GU Jinben, TAO Yi, DOU Yafen. Research on Mechanical Properties of GFRP Tube Confined Biochar Concrete Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 149-159. doi: 10.3724/j.gyjzG24032002
    [2]WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805
    [3]LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
    [4]ZHANG Peng, YANG Siqi, DENG Yu, NI Miao, LING Daoyuan. Research on Mechanical Properties of Bamboo Winding Composite Pipe Reinforced Thin-Walled Steel Tube Composite Structures Under Axical Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 62-68. doi: 10.3724/j.gyjzG23010801
    [5]YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
    [6]LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605
    [7]HUANG Hui, LU Sifang, ZHANG Xiang, JIA Bin, LU Yonggang. Anti-implosion Performances of Steel Pipes Strengthened with CFRP Sheets[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 211-215. doi: 10.13204/j.gyjzG20031209
    [8]ZHANG Ying, WANG Rui, ZHAO Hui, AN Guoqing. Mechanical Properties of Octagonal Hollow Concrete Filled Steel Tube Short Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 113-119. doi: 10.13204/j.gyjzG20122411
    [9]LI Xiaozhong, ZHANG Sumei. Axial Compression Performance and Mechanical Property of CFST Columns Reinforced with Outer Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 122-130. doi: 10.13204/j.gyjzG22072710
    [10]CHEN Zongping, NING Fan. Experimental Research on Mechanical Properties of Concrete-filled Double-skin Square Steel Tubular (Oblique Inside and Straight Outside) Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 8-16. doi: 10.13204/j.gyjzG20102106
    [11]HU Xiaopeng, WU Xiao, PENG Gang. CALCULATION MODEL OF EARLY CARBONATION DEPTH OF MINERAL ADMIXTURE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 106-111. doi: 10.13204/j.gyjzG19112905
    [12]XIAO Chengzhi, GE Chenhe, WANG Zihan, SI Yu. TEST AND NUMERICAL ANALYSIS OF MECHANICAL PROPERTIES OF GROUTED MICRO-STEEL-PIPE PILES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 85-92. doi: 10.13204/j.gyjz202006014
    [13]CUI Yubo, WANG Jingfeng, SHEN Qihan, DING Zhaodong, LI Zhipeng. ANALYSIS AND DESIGN OF REINFORCED CONCRETE STUB COLUMNS WITH REBAR HRB635 UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 1-10. doi: 10.13204/j.gyjzG20062707
    [14]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [15]CHEN Zongping, ZHOU Ji. COMPARATIVE ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF RECYCLED CONCRETE SHORT COLUMN FILLED CIRCULAR AND SQUARE STEEL TUBE AFTER BEING SUBJECTED TO HIGH TEMPERATURES AND WATER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 150-157. doi: 10.13204/j.gyjz202002023
    [16]ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
    [17]Cao Dan Zhang Dachang, . COMPARISON AND ANALYSIS OF STEEL TUBULAR UNDER AXIAL COMPRESSION IN CHINESE AND FOREIGN CODES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 169-174. doi: 10.13204/j.gyjz201506033
    [18]Wang Xiaolu, Zha Xiaoxiong, Cang Youqing, Yu Min. EXPERIMENTAL AND THEORETICAL RESEARCH ON GFRP-CFST COMPOSITE COLUMN UNDER AXIAL COMPRESSIVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 25-29. doi: 10.13204/j.gyjz201106005
    [19]Liu Xiao, Wang Bing, Wang Lianguang. THE THEORETIC RESEARCH ON FLEXURAL BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE WITH H-SHAPED SECTION OR CROSS STEEL SECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 95-97. doi: 10.13204/j.gyjz200807024
    [20]Li Guangxing, Cai Jian, Yang Chun, Lin Fan. STUDY ON EQUIVALENT BEAM CALCULATING MODEL OF REINFORCED CONCRETE FLAT SLAB-T-COLUMN STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 54-56. doi: 10.13204/j.gyjz200706014
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.7 %FULLTEXT: 5.7 %META: 90.1 %META: 90.1 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.5 %其他: 19.5 %其他: 3.7 %其他: 3.7 %Elizabeth City: 0.2 %Elizabeth City: 0.2 %Girard: 0.5 %Girard: 0.5 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.2 %Hollywood: 0.2 %Malvern: 0.5 %Malvern: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Norman: 2.7 %Norman: 2.7 %Philadelphia: 0.2 %Philadelphia: 0.2 %Rochester: 0.2 %Rochester: 0.2 %State College: 0.2 %State College: 0.2 %Wixom: 0.5 %Wixom: 0.5 %上海: 1.7 %上海: 1.7 %上饶: 0.2 %上饶: 0.2 %丹佛: 0.5 %丹佛: 0.5 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %克孜勒苏: 0.2 %克孜勒苏: 0.2 %兰州: 0.5 %兰州: 0.5 %利特尔顿: 0.2 %利特尔顿: 0.2 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %北京: 5.7 %北京: 5.7 %华盛顿: 0.2 %华盛顿: 0.2 %南京: 2.2 %南京: 2.2 %南昌: 0.2 %南昌: 0.2 %卡尔斯鲁厄: 0.2 %卡尔斯鲁厄: 0.2 %卡罗尔顿: 0.2 %卡罗尔顿: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %商丘: 0.2 %商丘: 0.2 %圣路易斯: 0.2 %圣路易斯: 0.2 %坦佩: 0.2 %坦佩: 0.2 %士嘉堡: 0.2 %士嘉堡: 0.2 %大克罗伊茨: 0.2 %大克罗伊茨: 0.2 %大连: 0.5 %大连: 0.5 %天津: 1.7 %天津: 1.7 %娄底: 0.2 %娄底: 0.2 %安大略: 0.2 %安大略: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 1.2 %密蘇里城: 1.2 %巴拿马城: 0.5 %巴拿马城: 0.5 %布鲁克林区: 0.2 %布鲁克林区: 0.2 %常德: 0.2 %常德: 0.2 %广州: 3.4 %广州: 3.4 %廊坊: 0.7 %廊坊: 0.7 %开封: 0.2 %开封: 0.2 %张家口: 0.2 %张家口: 0.2 %徐州: 0.2 %徐州: 0.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.2 %晋城: 0.2 %杭州: 2.2 %杭州: 2.2 %查塔努加: 0.2 %查塔努加: 0.2 %柳州: 0.2 %柳州: 0.2 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %武汉: 1.7 %武汉: 1.7 %法拉盛: 0.2 %法拉盛: 0.2 %泽西: 0.5 %泽西: 0.5 %洛杉矶: 0.7 %洛杉矶: 0.7 %济南: 0.7 %济南: 0.7 %海口: 0.5 %海口: 0.5 %淮南: 0.2 %淮南: 0.2 %深圳: 0.2 %深圳: 0.2 %温尼伯: 0.5 %温尼伯: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %濮阳: 1.5 %濮阳: 1.5 %瑟普赖斯: 0.7 %瑟普赖斯: 0.7 %盐城: 0.2 %盐城: 0.2 %盘锦: 0.2 %盘锦: 0.2 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.7 %福州: 0.7 %科珀斯克里斯蒂: 0.2 %科珀斯克里斯蒂: 0.2 %纽约: 0.5 %纽约: 0.5 %绍曾德奥克斯: 0.2 %绍曾德奥克斯: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 5.7 %芒廷维尤: 5.7 %苏州: 1.0 %苏州: 1.0 %蒙哥马利: 0.5 %蒙哥马利: 0.5 %襄阳: 0.2 %襄阳: 0.2 %西宁: 9.1 %西宁: 9.1 %西安: 2.2 %西安: 2.2 %诺沃克: 0.2 %诺沃克: 0.2 %诺瓦托: 0.7 %诺瓦托: 0.7 %贝瑟默: 0.5 %贝瑟默: 0.5 %贵阳: 0.2 %贵阳: 0.2 %迈阿密: 0.2 %迈阿密: 0.2 %运城: 2.2 %运城: 2.2 %连云港: 0.2 %连云港: 0.2 %迪拜: 0.2 %迪拜: 0.2 %郑州: 1.7 %郑州: 1.7 %都伯林: 0.2 %都伯林: 0.2 %镇江: 0.2 %镇江: 0.2 %长春: 0.5 %长春: 0.5 %长沙: 0.5 %长沙: 0.5 %青岛: 1.0 %青岛: 1.0 %麦迪逊: 0.2 %麦迪逊: 0.2 %其他其他Elizabeth CityGirardGwynn OakHollywoodMalvernNahantNormanPhiladelphiaRochesterState CollegeWixom上海上饶丹佛伊利诺伊州克孜勒苏兰州利特尔顿加利福尼亚北京华盛顿南京南昌卡尔斯鲁厄卡罗尔顿厦门台州合肥呼和浩特哈尔滨商丘圣路易斯坦佩士嘉堡大克罗伊茨大连天津娄底安大略宜昌宣城密蘇里城巴拿马城布鲁克林区常德广州廊坊开封张家口徐州成都扬州昆明晋城杭州查塔努加柳州森尼韦尔武汉法拉盛泽西洛杉矶济南海口淮南深圳温尼伯温州湖州濮阳瑟普赖斯盐城盘锦石家庄福州科珀斯克里斯蒂纽约绍曾德奥克斯绵阳芒廷维尤苏州蒙哥马利襄阳西宁西安诺沃克诺瓦托贝瑟默贵阳迈阿密运城连云港迪拜郑州都伯林镇江长春长沙青岛麦迪逊

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(2) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return