Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Chen Aoyi, Zhang Zhaoyi, Wang Hui, Yang Zhiyan, Zhang Jiaqi. CONSTRUCTION INDUSTRIALIZATION AND GREEN MODULE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 108-111. doi: 10.13204/j.gyjz201406024
Citation: LI Buhui, NING Shuaipeng, ZHAO Yingneng, XUE Zhengyuan, SHEN Guohui. Drag Coefficients of Elevator Shaft of Ultra-High Long-Span Transmission Tower with Height of 385 Meters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 28-33,118. doi: 10.13204/j.gyjzG22011304

Drag Coefficients of Elevator Shaft of Ultra-High Long-Span Transmission Tower with Height of 385 Meters

doi: 10.13204/j.gyjzG22011304
  • Received Date: 2022-01-13
    Available Online: 2022-12-01
  • Wind tunnel tests were conducted on sectional models and whole tower models to obtain the wind loading on the elevator shaft of long-span transmission towers. The influence of climbing ladders and interference of tower body on the drag coefficient of the elevator shaft was analyzed. The test results were compared with those regulated in different countries’ codes. Finally, the drag coefficients of the elevator shaft were recommended for the design. The results showed that the drag coefficients of elevator shaft with climbing ladder was larger than that of shaft without climbing ladder. With the interference effect of tower body, the drag coefficients significantly varied with the wind azimuth, reaching their maximum value at 35 degree and their minimum value at 45 degree. The aerodynamic coefficients of the shaft obtained from sectional model and whole tower model tests were almost equaled. The drag coefficients of the shaft with respect to wind azimuth under the interference of tower body were recommended. The maximum value of elevator shaft without climbing ladder was 0.93, which was quite close to 0.9 that was the drag coefficient of smooth circular cylinder recommended by Load Code for the Design of Building Structures (GB 50009-2012).
  • [1]
    电子规划设计总院.架空输电线路荷载规范:DL/T 5551—2018[S]. 北京: 中国计划出版社, 2018.
    [2]
    SIMIU E, SCANLAN R H. Wind effects on structures: fundamentals and applications to design[M]. New York: Wiley, 1996.
    [3]
    孙一飞, 乔富贵, 贾娅娅, 等. 二维细长柱体气动力特性试验研究[J]. 石家庄铁道大学学报(自然科学版), 2019, 32(2):10-15.
    [4]
    RODRIGUEZ I, LEHMKUHL O, PIOMELLI U, et al. LES-based study of the roughness effects on the wake of a circular cylinder from subcritical to transcritical Reynolds numbers[J]. Flow Turbulence and Combustion, 2017, 99(3):729-763.
    [5]
    刘庆宽, 邵奇, 郑云飞, 等. 雷诺数对圆柱气动力和流场影响的试验研究[J].试验流体力学, 2016, 30(4):7-13.
    [6]
    马文勇, 袁欣欣, 张晓斌, 等. 圆形断面在35 k~330 k雷诺数范围的气动力特性研究[J]. 工程力学, 2015, 32(增刊1):348-352.
    [7]
    沈国辉, 姚剑锋, 郭勇, 等. 直径30 cm圆柱的气动力参数和绕流特性研究 [J]. 振动与冲击, 2020, 39(6):22-28.
    [8]
    王振华, 金晓华, 何天胜. 500 kV新崖门大跨越输电塔结构设计[J]. 电力建设, 2010, 31(9):30-33.
    [9]
    史耀虎, 高强, 任超, 等. 大跨越输电塔电梯井道在静风载荷下的受力分析[J]. 苏州大学学报(工科版), 2009, 29(4):30-32,44.
    [10]
    沈国辉, 项国通, 邢月龙, 等. 2种风场下格构式圆钢塔的天平测力试验研究[J],浙江大学学报(工学版),2014,48(4

    ):704-710.
    [11]
    CEN. Eurocode 3-design of steel structures-part 3-1: towers, masts and chimneys-towers and masts: EN 1993-3-1[S]. Brussels, Belgium: CEN,1993.
    [12]
    中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [13]
    ASCE. Minimum design loads and associated criteria for buildings and other structures:ASCE/SEI 7-16[S]. Virginia: American Society of Civil Engineers, 2017.
    [14]
    ECS. Eurocode l: Actions on structures-part 1-4: general actions-wind actions:EN 1991-1-4∶2005[S]. Brussels: European Committee for Standardization, 2005.
    [15]
    AIJ. Recommendations for loads on buildings:RLB-AIJ∶2004[S]. Tokyo: Architectural Institute of Japan, 2004.
    [16]
    JTC. Structural design actions-part 2: wind actions:AS/NZS 1170.2∶2011[S]. Sydney: Joint Technical Committee, 2011.
  • Relative Articles

    [1]XING Guolei, LI Shouying, WU Yingqiang, LIU Min, WANG Yongfeng. Research on Wind-Induced Responses of a Solar Tower in CSP Station Based on Aeroelastic Model Test[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 148-152,160. doi: 10.13204/j.gyjzG21101208
    [2]XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
    [3]HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
    [4]HUANG Peng, LIN Huatan, GU Ming. THE WIND TUNNEL TEST OF THE AEROELASTIC MODEL OF A STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 64-68. doi: 10.13204/j.gyjzG201906280004
    [12]Sun Binyan, Zhang Xuwei, Chen Jiaguang. VIBRATION MODES COUPLING EFFECT IN THE WIND-INDUCED RESPONSE OF A LONG SPAN ROOF[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 139-143. doi: 10.13204/j.gyjz201208027
    [13]Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
    [14]Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
    [15]Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
    [16]Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
    [17]Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024
    [18]Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
    [19]Xue Weichen, Huang Yongjia, Wang Guinian. PROTOTYPE EXPERIMENTAL STUDIES ON FLEXIBLE FLANGES FOR LONG-SPAN ELECTRIC TRANSMISSION TOWER IN WUSONGKOU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 68-70. doi: 10.13204/j.gyjz200403021
  • Cited by

    Periodical cited type(3)

    1. 曾璧环,池曦锵,张佳毅,杨德栋,曹枚根. 海岛输电塔线体系风振响应及易损性分析. 山东电力技术. 2024(01): 24-34 .
    2. 朱薇薇,加永登增,侯栋,孙禄,周甘霖. 藏东高压输电线路设计中线条风荷载计算对比. 甘肃科技. 2023(05): 51-56 .
    3. 舒赣平,罗柯镕,王章轩,朱姣,余亮,墨泽,宁帅朋. 385m超大型长江大跨越输电塔铸钢节点受力性能研究. 工业建筑. 2022(08): 34-40+47 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 86.4 %META: 86.4 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %北京: 4.5 %北京: 4.5 %南京: 1.0 %南京: 1.0 %呼伦贝尔: 0.5 %呼伦贝尔: 0.5 %天津: 1.0 %天津: 1.0 %太原: 0.5 %太原: 0.5 %安康: 0.5 %安康: 0.5 %常德: 1.0 %常德: 1.0 %平凉: 1.0 %平凉: 1.0 %广州: 1.5 %广州: 1.5 %张家口: 1.0 %张家口: 1.0 %徐州: 0.5 %徐州: 0.5 %无锡: 1.0 %无锡: 1.0 %昆明: 3.5 %昆明: 3.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 2.5 %朝阳: 2.5 %杭州: 0.5 %杭州: 0.5 %武汉: 1.0 %武汉: 1.0 %沈阳: 1.0 %沈阳: 1.0 %济南: 0.5 %济南: 0.5 %温州: 1.0 %温州: 1.0 %漯河: 1.0 %漯河: 1.0 %潍坊: 1.0 %潍坊: 1.0 %秦皇岛: 1.0 %秦皇岛: 1.0 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 28.8 %西宁: 28.8 %西安: 1.0 %西安: 1.0 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.5 %运城: 3.5 %郑州: 2.0 %郑州: 2.0 %重庆: 2.0 %重庆: 2.0 %铁岭: 3.5 %铁岭: 3.5 %长沙: 2.0 %长沙: 2.0 %阿坝: 0.5 %阿坝: 0.5 %青岛: 1.0 %青岛: 1.0 %黄山: 0.5 %黄山: 0.5 %黄石: 1.0 %黄石: 1.0 %其他北京南京呼伦贝尔天津太原安康常德平凉广州张家口徐州无锡昆明晋城朝阳杭州武汉沈阳济南温州漯河潍坊秦皇岛芒廷维尤芝加哥西宁西安贵阳运城郑州重庆铁岭长沙阿坝青岛黄山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(3) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return