Core Chinese Journal
Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104
Citation: ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104

Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device

doi: 10.13204/j.gyjzG21122104
  • Received Date: 2021-12-21
  • The steel frame structure with lateral resistance energy-consuming device (LRED-SF) is first introduced. The finite element model of the earthquake-resilient prefabricated column foot joints with lateral resistance energy-consuming device was established and its correctness was verified. And then the finite element model of LRED-SF was established. Based on the incremental dynamic analysis method (IDA), the seismic fragility analysis with 22 seismic waves was carried out on the rigid steel frame (RSF) and LRED-SF. The seismic fragility curves and the structural collapse margin ratio (CMR) of the two structures were compared. The influence of the width and thickness of the lateral resistance shear member (LRSM) and the stiffness ratio of the beam of LRSM on the seismic fragility of LRED-SF was analyzed. The result showes that the seismic performance of LRED-SF is better than RSF. The structural collapse resistance is positively related to the width of LRSM and the stiffness ratio of the beam of LRSM. However, when the width of LRSM increases to a certain extent, the collapse resistance of the structure will decrease.
  • loading
  • [1]
    吕西林,陈云,毛苑君.结构抗震设计的新概念:可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948.
    [2]
    吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4): 130-139.
    [3]
    吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1-15.
    [4]
    MANSOUR N, CHRISTOPOULOS C, TREMBLAY R. Experimental validation of replaceable shear links for eccentrically braced steel frames[J]. Journal of Structural Engineering, 2011, 137(10): 1141-1152.
    [5]
    CASTIGLIONI C A, KANYILMAZ A, CALADO L. Experimental analysis of seismic resistant composite steel frames with dissipative devices[J]. Journal of Constructional Steel Research, 2012(76): 1-12.
    [6]
    吕西林, 陈云, 蒋欢军. 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2014, 42(2): 175-182.
    [7]
    陈以一, 贺修樟. 配置可更换角钢连接构造的钢框架试验研究[J]. 钢结构(中英文), 2020, 35(8): 1-16.
    [8]
    刘阳, 郭子雄, 贾磊鹏, 等. 震损可更换组合柱抗震性能试验研究[J]. 建筑结构学报, 2020, 41(7): 45-54.
    [9]
    JIANG Z Q, YANG X F, DOU C, et al. Cyclic testing of replaceable damper: Earthquake-resilient prefabricated column-flange beam-column joint[J]. Engineering Structures, 2019(183): 922-936.
    [10]
    ZHANG A L, ZHANG H, JIANG Z Q, et al. Low cycle reciprocating tests of earthquake-resilient prefabricated column-flange beam-column joints with different connection forms[J/OL]. Journal of Constructional Steel Research, 2020(164)[2021-12-21].https://www.sciencedirect.com/science/article/pii/S0143974X19306662?via%3Dihub.
    [11]
    杨晓峰. 可恢复功能装配式柱脚节点及框架抗震性能研究[D]. 北京:北京工业大学, 2020.
    [12]
    姜子钦, 杨晓峰, 张爱林, 等. 带可更换抗侧耗能装置的装配式钢框架结构静力性能研究[J]. 北京工业大学学报, 2021, 47(4): 365-373

    ,382.
    [13]
    ZHANG A L, CHEN X, JIANG Z Q, et al. Experiment on seismic behavior of earthquake-resilience prefabricated cross hinge column foot joint[J/OL]. Journal of Constructional Steel Research, 2022(189)[2021-12-21].https:// www.sciencedirect.com/science/article/pii/S0143974X21005381?via%3Dihub.
    [14]
    吕大刚, 王光远. 基于可靠度和灵敏度的结构局部地震易损性分析[J]. 自然灾害学报, 2006, 15(4): 157-162.
    [15]
    NASSERASADI K. Developing seismic fragility function of structures by stochastic approach[J]. Asia Journal of Civil Engineering, 2008, 8(6): 183-200.
    [16]
    徐善华, 张宗星, 李柔, 等. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115.
    [17]
    朱凯铭, 郭玉荣. 主余震序列作用下屈曲约束支撑框架易损性分析[J]. 结构工程师, 2019, 35(6): 109-115.
    [18]
    方成, 黄琳婷, 王伟, 等.基于混合控制的自复位支撑钢框架抗震性能研究[J]. 建筑结构学报, 2020, 41(增刊2): 180-191.
    [19]
    王伟, 胡书领, 邹超. 基于增量动力分析的梁贯通式支撑钢框架地震易损性研究[J]. 建筑结构学报, 2021, 42(4): 42-49.
    [20]
    LUCO N, CORNELL C A. Effects of connection fractures on SMRF seismic drift demands[J]. Journal of Structural Engineering, 2000, 126(1): 127-136.
    [21]
    LUCO N, CORNELL C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthquake Spectra, 2007, 23(2): 357-392.
    [22]
    Federal Emergency Management Agency (FEMA).Earthquake loss estimation methodology HAZUS 99Service Release 2 (SR2) technical manual [S].Washington,D. C.: FEMA, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (29) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return