Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 1
Apr.  2022
Turn off MathJax
Article Contents
WANG Yuhang, ZHAO Yuting, ZHOU Xuhong, LI Qiqi. Experimental Research and Bearing Capacity Calculation of Ceramsite Concrete Filled Circular Steel Tube Short Column Under Uniaxial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 1-7. doi: 10.13204/j.gyjzG21112411
Citation: WANG Yuhang, ZHAO Yuting, ZHOU Xuhong, LI Qiqi. Experimental Research and Bearing Capacity Calculation of Ceramsite Concrete Filled Circular Steel Tube Short Column Under Uniaxial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 1-7. doi: 10.13204/j.gyjzG21112411

Experimental Research and Bearing Capacity Calculation of Ceramsite Concrete Filled Circular Steel Tube Short Column Under Uniaxial Compression

doi: 10.13204/j.gyjzG21112411
  • Received Date: 2021-11-24
    Available Online: 2022-04-24
  • Uniaxial compression tests were carried out on 14 short ceramsite concrete columns confined by circular steel tubes. The effects of the yield strength of steel tube, the ratio of diameter to thickness, and the contact between steel tube and ceramsite concrete on the failure mode, load-displacement curve, load-strain curve, load-lateral deformation coefficient, and bearing capacity were studied experimentally. The results showed that all specimens exhibited shear failure under axial compression, and the shear angle was about 60°, and the load-displacement curve had no obvious descending section. When D/t ≥ 19, the ultimate bearing capacity increased with the decrease of the ratio of diameter to thickness. The higher the yield strength of steel pipe and the film between the steel pipe and the concrete, the greater the restraint effect of the steel pipe on the concrete. The calculation results were in good agreement with the test results without considering the influence of the contact between steel tube and concrete.
  • loading
  • [1]
    中华人民共和国建设部.轻集料混凝土技术规程:JGJ 51-2002[S].北京:中国建筑工业出版社,2002.
    [2]
    YU Q L, SPIESZ P, BROUWERS H. Ultralightweight concrete:conceptual design and performance evaluation[J]. Cement & Concrete Composites, 2015, 61:18-28.
    [3]
    刘平,葛婷,王小亮.LC7.5轻质陶粒混凝土的配制与性能研究[J].建材发展导向,2019,17(12):105-108.
    [4]
    GAO J, SUN W, MORINO K. Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete[J]. Cement and Concrete Composites, 1997, 19(4):307-313.
    [5]
    WANG P T, SHAH S P, NAAMAN A E. Stress-strain curves of normal and lightweight concrete in compression[J]. Journal of American Concrete Institute, 1978,75(11):603-611.
    [6]
    王振宇, 丁建彤, 郭玉顺. 结构轻骨料混凝土的应力-应变全曲线[J]. 混凝土, 2005(3):39-41,66.
    [7]
    叶列平, 孙海林, 陆新征, 等. 高强轻骨料混凝土结构性能、分析与计算[M]. 北京:科学出版社, 2009:1-4.
    [8]
    ZHANG M H, GJVORV O E. Mechanical properties of high-strength lightweight concrete[J]. Materials Journal, 1991, 88(3):240-247.
    [9]
    董祥. 纤维增强高性能轻骨料混凝土物理力学性能、抗冻性及微观结构研究[D]. 南京:东南大学, 2005.
    [10]
    田耀刚. 高强次轻混凝土的研究[D].武汉:武汉理工大学,2005.
    [11]
    周绪红,刘界鹏.钢管约束混凝土柱的性能与设计[M]. 北京:科学出版社,2010.
    [12]
    ZHAN Y, ZHAO R, MA Z J, et al. Behavior of prestressed concrete-filled steel tube (CFST) beam[J]. Engineering Structures, 2016, 122:144-155.
    [13]
    LAI M H, HO J C M. A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns[J]. Engineering Structures, 2016, 125:124-143.
    [14]
    FAKHARIFAR M, CHEN G. Compressive behavior of FRP-confined concrete-filled PVC tubular columns[J]. Composite Structures, 2016, 141:91-109.
    [15]
    WANG X D,LIU J P,ZHANG S M.Behavior of short circular tubed-reinforced-concrete columns subjected to eccentric compression[J]. Engineering Structures,2015,105:77-86.
    [16]
    张素梅,刘界鹏,马乐,等.圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J].土木工程学报,2007,40(3):24-31.
    [17]
    WANG X D,LIU J P,ZHANG S M.Behavior of short circular tubed-reinforced-concrete columns subjected to eccentric compression[J]. Engineering Structures,2015,105:77-86.
    [18]
    ZHOU X H,LIU J P,WANG X D,et al.Behavior and design of slender circular tubed-reinforced-concrete columns subjected to eccentric compression[J]. Engineering Structures,2016,124:17-28.
    [19]
    周绪红,闫标,刘界鹏,等.不同长径比圆钢管约束钢筋混凝土柱轴压承载力研究[J].建筑结构学报,2018,39(12):11-21.
    [20]
    甘丹. 钢管约束混凝土短柱的静力性能和抗震性能研究[D].兰州:兰州大学,2012.
    [21]
    刘文晓,姜凡,李淼,等.圆钢管约束轻骨料钢筋混凝土轴压短柱力学性能试验[J].混凝土,2020(8):19-22,26.
    [22]
    高喜安,吴成龙,李斌.方钢管约束轻骨料混凝土轴压短柱的力学性能[J].科学技术与工程,2018,18(12):256-261.
    [23]
    宋玉普, 赵国藩. 轻骨料砼在双轴压压及拉压状态下的变形和强度特性[J]. 建筑结构学报, 1994, 15(2):17-21.
    [24]
    杨明. 钢管约束下核心轻集料混凝土基本力学性能研究[D].南京:河海大学,2006.
    [25]
    李帼昌,刘之洋,杨良志.钢管煤矸石砼中核心砼的强度准则及本构关系[J].东北大学学报,2002(1):64-66.
    [26]
    吴东阳,傅中秋,吉伯海,等.钢管约束下轻集料混凝土本构模型[J].扬州大学学报(自然科学版),2019,22(1):67-73.
    [27]
    颜燕祥,徐礼华,蔡恒,等.高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J].建筑结构学报,2019,40(12):128-137.
    [28]
    MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (429) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return