Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Chen Aoyi, Zhang Zhaoyi, Wang Hui, Yang Zhiyan, Zhang Jiaqi. CONSTRUCTION INDUSTRIALIZATION AND GREEN MODULE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 108-111. doi: 10.13204/j.gyjz201406024
Citation: LI Xin, CHENG Hui, LIU Jiaping, ZHAO Yuanchao. Concept and Architectural Strategies of Partitioned Epidemic Control in Hub-Airport Terminals[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 91-96,151. doi: 10.13204/j.gyjzG21111718

Concept and Architectural Strategies of Partitioned Epidemic Control in Hub-Airport Terminals

doi: 10.13204/j.gyjzG21111718
  • Received Date: 2021-11-17
    Available Online: 2022-12-01
  • The COVID-19 has a huge impact and caused significant human and economic losses. Hub-airport terminals play an important role in epidemic prevention and control but are not conducive to the response, because of the lack of architectural theories and methods for epidemic control. Based on the usage pattern and guided by the problems, the paper proposed the concept of partitioned epidemic control in hub-airport terminals. Based on the departure process, the partitioned epidemic control mode was constructed by integrated key elements of epidemic control. Guided by the combination of epidemic control and normal condition, the partitioned epidemic control strategies and architectural design measures were formulated. The concept and strategies of partitioned epidemic control are beneficial attempt to the theory and method of epidemic control in hub-airport terminals.
  • [1]
    HUGH P. Airport:a century of architecture [M]. London:Laurence King Publishing, 2004.
    [2]
    傅国华. 机场航站楼的设计理念[M]. 上海:同济大学出版社, 2012.
    [3]
    刘武君. 航空港规划[M]. 上海:上海科学技术出版社, 2013.
    [4]
    徐平利. 金水龙源:甘肃兰州中川机场航站楼[J]. 建筑创作, 2010(1):96-103.
    [5]
    孙国城. 探求现代空港建筑设计中的地域性:乌鲁木齐地窝堡国际机场航站楼设计随笔[J]. 新建筑, 2003(3):17-19.
    [6]
    安军. 西安咸阳国际机场扩建工程航站楼设计[J]. 新建筑, 2003(3):6-8.
    [7]
    安军. 着眼未来的机场规划[J]. 工业建筑, 2007, 37(7):9-12.
    [8]
    安军,吴宝泉,王君. 青藏高原上的生态机场:西宁曹家堡国际机场三期扩建工程的规划和设计[J]. 工业建筑, 2018, 48(12):37-42.
    [9]
    安军,王刚,刘月超. 长安盛殿、丝路新港:西安咸阳国际机场东航站区规划设计[J]. 工业建筑, 2018, 48(12):31-36.
    [10]
    安军,朱晓月. 城市文脉融入现代机场设计[J]. 当代建筑, 2020(10):46-49.
    [11]
    中国民用航空局机场司.民用机场航站楼绿色性能调研测试报告:IB-CA-2017-01[R]. 北京: 2017.
    [12]
    中国健康教育中心. 新型冠状病毒肺炎健康教育手册[M]. 北京:人民卫生出版社, 2020.
    [13]
    陈孝储,侯晓杰,李正超,等. 某医学中心应对新型冠状病毒肺炎疫情"四分法"管理模式探索与实践[J]. 武警医学, 2020, 31(4):340-342.
    [14]
    张敏,陈璐,熊婉. 英文医学期刊应对新冠肺炎疫情的策略探析[J]. 科技与出版, 2020(3):93-95.
    [15]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组. 重点场所重点单位重点人群新冠肺炎疫情防控相关防控技术指南[EB/OL]. 2020-04-08.http://www.gov.cn/xinwen/2020-04/09/content_5500689.htm.
    [16]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组.关于印发全国不同风险地区企事业单位复工复产疫情防控措施指南的通知[EB/OL]. 2020-04-09. http://www.gov.cn/zhengce/content/2020-04/09/content_5500685.htm.
    [17]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组.关于做好新冠肺炎疫情常态化防控工作的指导意见[EB/OL]. 2020-05-08.http://www.gov.cn/xinwen/2020-05/08/content_5509965.htm.
    [18]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组.关于进一步做好当前新冠肺炎疫情防控工作的通知[EB/OL]. 2021-01-18. http://www.gov.cn/zhengce/zhengceku/2021-01/20/content_5581361.htm.
    [19]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组.关于印发重点场所重点单位重点人群新冠肺炎疫情常态化防控相关防护指南[EB/OL]. 2021-08-13.http://www.gov.cn/xinwen/2021-08/13/content_5631094.htm.
    [20]
    国务院应对新型冠状病毒肺炎疫情联防联控机制综合组.关于印发进一步推进新冠病毒核酸检测能力建设工作方案的通知[EB/OL]. 2021-08-31.http://www.gov.cn/zhengce/content/2020-08/31/content_5538788.htm.
  • Relative Articles

    [1]XING Guolei, LI Shouying, WU Yingqiang, LIU Min, WANG Yongfeng. Research on Wind-Induced Responses of a Solar Tower in CSP Station Based on Aeroelastic Model Test[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 148-152,160. doi: 10.13204/j.gyjzG21101208
    [2]XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
    [3]HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
    [4]HUANG Peng, LIN Huatan, GU Ming. THE WIND TUNNEL TEST OF THE AEROELASTIC MODEL OF A STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 64-68. doi: 10.13204/j.gyjzG201906280004
    [12]Sun Binyan, Zhang Xuwei, Chen Jiaguang. VIBRATION MODES COUPLING EFFECT IN THE WIND-INDUCED RESPONSE OF A LONG SPAN ROOF[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 139-143. doi: 10.13204/j.gyjz201208027
    [13]Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
    [14]Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
    [15]Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
    [16]Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
    [17]Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024
    [18]Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
    [19]Xue Weichen, Huang Yongjia, Wang Guinian. PROTOTYPE EXPERIMENTAL STUDIES ON FLEXIBLE FLANGES FOR LONG-SPAN ELECTRIC TRANSMISSION TOWER IN WUSONGKOU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 68-70. doi: 10.13204/j.gyjz200403021
  • Cited by

    Periodical cited type(3)

    1. 曾璧环,池曦锵,张佳毅,杨德栋,曹枚根. 海岛输电塔线体系风振响应及易损性分析. 山东电力技术. 2024(01): 24-34 .
    2. 朱薇薇,加永登增,侯栋,孙禄,周甘霖. 藏东高压输电线路设计中线条风荷载计算对比. 甘肃科技. 2023(05): 51-56 .
    3. 舒赣平,罗柯镕,王章轩,朱姣,余亮,墨泽,宁帅朋. 385m超大型长江大跨越输电塔铸钢节点受力性能研究. 工业建筑. 2022(08): 34-40+47 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.0 %FULLTEXT: 18.0 %META: 79.3 %META: 79.3 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %上海: 0.7 %上海: 0.7 %丽水: 0.7 %丽水: 0.7 %北京: 3.3 %北京: 3.3 %天津: 0.7 %天津: 0.7 %常德: 1.3 %常德: 1.3 %张家口: 3.3 %张家口: 3.3 %无锡: 1.3 %无锡: 1.3 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.3 %杭州: 1.3 %济南: 0.7 %济南: 0.7 %芒廷维尤: 28.0 %芒廷维尤: 28.0 %西宁: 30.0 %西宁: 30.0 %西安: 0.7 %西安: 0.7 %贵阳: 0.7 %贵阳: 0.7 %运城: 5.3 %运城: 5.3 %郑州: 3.3 %郑州: 3.3 %铁岭: 1.3 %铁岭: 1.3 %银川: 4.0 %银川: 4.0 %青岛: 1.3 %青岛: 1.3 %其他上海丽水北京天津常德张家口无锡昆明晋城朝阳杭州济南芒廷维尤西宁西安贵阳运城郑州铁岭银川青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return