Citation: | LIANG Chaofeng, FU Yangyan, ZHAO Jiangxia, GAO Yueqing, WANG Chunhui. Damping Properties of Rubber Modified Recycled Aggregate Concrete Subjected to Different Damage Degrees[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 194-200,146. doi: 10.13204/j.gyjzG21111009 |
[1] |
TOPCU I B. The properties of rubberized concrete [J]. Cement and Concrete Research, 1994, 25(2):304-310.
|
[2] |
SIDDIKA A, MAMUN M A A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: a review [J]. Construction and Building Materials, 2019, 224: 711-731.
|
[3] |
XUE J, SHINOZUKA M. Rubberized concrete: a green structural material with enhanced energy-dissipation capability [J]. Construction and Building Materials, 2013, 42: 196-204.
|
[4] |
COLOMER ROSELL E A, ALCAN~IZ MARTI'NEZ J H, FEMENI'A QUILES R, et al. Mitigation of vibrations in rail tunnels from the injection of a new mortar composed of recycled tire rubber in the space formed by segments and excavated land[J]. Journal of Vibration Engineering and Technologies, 2020,9(3):469-476.
|
[5] |
ZHENG L, SHARON HUO X, YUAN Y. Experimental investigation on dynamic properties of rubberized concrete [J]. Construction and Building Materials, 2008, 22(5): 939-947.
|
[6] |
MEESIT R, KAEWUNRUEN S. Vibration characteristics of micro-engineered crumb rubber concrete for railway sleeper applications [J]. Journal of Advanced Concrete Technology, 2017, 15(2):55-66.
|
[7] |
NADAL G A, GADEA B J M, PARRES G A F, et al. Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar [J]. Construction and Building Materials, 2014, 50: 671-682.
|
[8] |
刘娟红,宋少民. 表面处理的橡胶颗粒对混凝土阻尼性能的影响[J]. 北京工业大学学报, 2009, 35(12): 1619-1623.
|
[9] |
KAEWUNRUEN S, LI D, YU C, et al. Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber [J]. Materials, 2018, 11(7):1169-1188.
|
[10] |
LIANG C, PAN B, MA Z, et al. Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: a review [J]. Cement and Concrete Composites, 2020, 105. DOI: 10.1016/j.cemconcomp.2019.103446.
|
[11] |
BEHERA M, BHATTACHARYYA S K, MINOCHA A K, et al. Recycled aggregate from C&D waste & its use in concrete-a breakthrough towards sustainability in construction sector: a review[J]. Construction and Building Materials, 2014, 68: 501-516.
|
[12] |
LIANG C, LIU T, XIAO J, et al. The damping property of recycled aggregate concrete[J]. Construction and Building Materials, 2016, 102: 834-842.
|
[13] |
梁超锋,刘铁军,肖建庄,等. 再生混凝土悬臂梁阻尼性能与损伤关系的试验研究[J]. 土木工程学报, 2016, 49(7): 100-106.
|
[14] |
XIAO J, LI W, SUN Z, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation[J]. Cement and Concrete Composites, 2013, 37: 276-292.
|
[15] |
XIAO J, LIU Q, WU Y. Numerical and experimental studies on fracture process of recycled concrete[J]. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35(8): 801-808.
|
[16] |
王静,石元,陈爱玖.橡胶再生混凝土基本力学性能试验研究[J]. 混凝土, 2014(4):74-77.
|
[17] |
中华人民共和国建设部. 普通混凝土用砂、石质量及检验方法标准:JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2006.
|
[18] |
LIANG C, XIAO J, WANG Y, et al. Frequency-dependent damping properties of recycled aggregate concrete [J]. Journal of Materials in Civil Engineering, 2021, 33(7). DOI: 10.1061/(ASCE)MT.1943-5533.0003742.
|
[19] |
American Society for Testing and Materials. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens: ASTM C215—2019 [S]. Philadelphia:ASTM, 2019.
|
[20] |
TIAN Y, YAN X, ZHANG M, et al. Effect of the characteristics of lightweight aggregates presaturated polymer emulsion on the mechanical and damping properties of concrete[J]. Construction and Building Materials, 2020,253. DOI: 1016/j.conbuildmat.2020.119154.
|
[21] |
CHOPRA A K. Dynamics of structures: Theory and applications to earthquake engineering[M]. Englewood Cliffs, NJ: Prentice Hall, 2001.
|
[22] |
ELMENSHAWI A, BROWN T. Hysteretic energy and damping capacity of flexural elements constructed with different concrete strengths[J]. Engineering Structures, 2010, 32(1): 297-305.
|
[23] |
RODRIGUEZ-GOMEZ S, CAKMAK A S. Evaluation of seismic damage indices for reinforced concrete structures [D]. Buffalo: State University of New York, 1990.
|
[24] |
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
|
[25] |
ALBANO C, CAMACHO N, REYES J, et al. Influence of scrap rubber addition to portland I concrete composites: destructive and non-destructive testing[J]. Composite Structures, 2005, 71(3/4):439-446.
|
[26] |
TURATSINZE A, GARROS M. On the modulus of elasticity and strain capacity of self-compacting concrete incorporating rubber aggregates[J]. Resources, Conservation and Recycling, 2008, 52(10): 1209-1215.
|
[27] |
HORA M, REITERMAN P. Assessment of the air-entraining effect of rubber powder and its influence on the frost resistance of concrete[J]. Revista Romana De Material-Romanian Journal of Materials, 2016, 46:327-333.
|
[28] |
ZHANG H, GOU M, LIU X, et al. Effect of rubber particle modification on properties of rubberized concrete[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2014, 29(4): 763-768.
|
[29] |
DONG Q, HUANG B, SHU X. Rubber modified concrete improved by chemically active coating and silane coupling agent[J]. Construction and Building Materials, 2013, 48: 116-123.
|
[30] |
周汝兵. 消泡剂对橡胶颗粒混凝土性能的影响[C]//建筑科技与管理学术交流会论文集. 北京:2013.
|
[31] |
BOMPA D, ELGHAZOULI A, XU B, STAFFORD P, et al. Experimental assessment and constitutive modelling of rubberised concrete materials[J]. Construction and Building Materials, 2017,137: 246-260.
|
[32] |
CHEN A, HAN X, WANG Z, GUO T. Dynamic properties of pretreated rubberized concrete under incremental loading[J]. Materials, 2021, 14(9): 2183.
|
[33] |
LIANG C, XIAO J, WANG Y, et al. Relationship between internal viscous damping and stiffness of concrete material and structure [J]. Structural Concrete, 2021,22(3):1410-1428.
|
[34] |
LIANG C, XIAO J, WANG C, et al. Hysteretic energy and damping variation of recycled aggregate concrete with different cyclic compression loading levels[J]. Journal of Building Engineering, 2021, 44. DOI: 10.1016/j.jobe.2021.102936.
|
[35] |
BOWLAND A G. Comparison and analysis of the strength, stiffness, and damping characteristics of concrete with rubber, latex, and carbonate additives [D]. Virginia: Virginia Polytechnic Institute and State University, 2011.
|